Basic parameter of the shock tube is the diaphragm pressure ratio p_4/p_1.

The two chambers may be at different temperatures, T_1 and T_4, and may contain different gases having different gas constants, R_1 and R_4.

At the instant when the diaphragm is broken, the pressure distribution is a step function. It then splits into a shock and an expansion fan as shown in the figure.
The shock propagates into the expansion chamber with speed V_{shock}. An expansion wave propagates into the high pressure chamber with speed a_4 at its front. Condition of the shock traversed by the shock is denoted by 2 and that traversed by the expansion wave is denoted by 3.

The interface between Regions 2 and 3 is called the contact surface. It marks the boundary between the fluids which were originally separated by the diaphragm. The contact surface is like the front of a piston driving into the low pressure region creating a shock front ahead of it.

The following conditions apply on either side of the contact surface:

\[
p_2 = p_3
\]

and

\[
u_2 = u_3
\]

Temperatures and densities will be different in Regions 2 and 3. The above two conditions are used to determine the shock strength p_3/p_4 and expansion strength p_2/p_1.

November 4, 2004

Computational Fluid Dynamics (AE/ME 339)
K. M. Isaac
MAEEM Dept., UMR

Computational Fluid Dynamics (AE/ME 339)
K. M. Isaac
MAEEM Dept., UMR
The above expression gives shock strength p_2/p_1 implicitly as a function of the diaphragm pressure ratio p_4/p_1.

The expansion strength can then be obtained as

$$\frac{p_3}{p_4} = \frac{p_3}{p_1} = \frac{p_2}{p_4} = \frac{p_2}{p_1}$$
The temperature behind the shock is obtained from the Rankine-Hugoniot relations

\[
\frac{T_2}{T_1} = \frac{1 + \frac{\gamma_1 - 1}{\gamma_1 + 1} \frac{p_2}{p_1}}{1 + \frac{\gamma_1 - 1}{\gamma_1 + 1} \frac{p_1}{p_2}}
\]