DYNAMICS REVIEW

1. A projectile fired at 30° from the horizontal with an initial velocity of 40 meters per second will reach a maximum height H above the horizontal of:

a. -81.5 m
b. -20.4 m
c. -6.2 m
d. -24.8 m
e. -141 m
2. At the highest point on its trajectory the radius of curvature of the path of the projectile in problem 1 (above) would be:
a. _ zero.
b. _ infinity.
c. - equal to the maximum elevation H (answer to problem 1).
d. -122 m .
e. -163 m .
3. The gear starts from rest and the angular position of line $O P$ is given by $\theta=2 t^{3}-7 t^{2}$ where θ is in radians and t in seconds. The magnitude of the total acceleration of point P when $t=2$ seconds is:
a. $-38 \mathrm{fps}^{2}$
b. $-10 \mathrm{fps}^{2}$
d. $-20 \mathrm{fps}^{2}$
e. $\ldots 19 \mathrm{fps}^{2}$

4. The acceleration of a particle moving along a straight line is directly proportional to its displacement: $\mathrm{a}=2 \mathrm{~s}$ where a is in meters per second squared and s is in meters. if the particle has a velocity of $+2 \mathrm{~m} / \mathrm{s}$ as it passes through the origin, its velocity at $\mathrm{s}=4 \mathrm{~m}$ will be:
a. $-18 \mathrm{~m} / \mathrm{s}$
b. $\quad 4.0 \mathrm{~m} / \mathrm{s}$
c. $-3.5 \mathrm{~m} / \mathrm{s}$
d. $-4.5 \mathrm{~m} / \mathrm{s}$
e. $\quad 6 \mathrm{~m} / \mathrm{s}$
(6)
5. Member OA has a constant angular velocity of 3 radians per seconds clockwise. For the position shown B is moving to the right with a velocity of:
a. - 12 ips .
b. -9 ips .
c. -16 ips .
d. _ 15 ips .
e. _ zero (it is instantaneously at rest).
6. Wheel OA is rotating counterclockwise with a constant angular velocity of 6 radians per second. At the instant shown the angular velocity of member $A B$ is zero, and the angular acceleration of AB is:
a. _ zero.
b. - $9 \mathrm{rad} / \mathrm{s}^{2}$ counterclockwise.
c. - $9 \mathrm{rad} / \mathrm{s}^{2}$ clockwise.
d. - $6 \mathrm{rad} / \mathrm{s}^{2}$ counterclockwise.
e. - $8.3 \mathrm{rad} / \mathrm{s}^{2}$ clockwise.

7. The 10 pound ball is supported by a cord and is swinging in the vertical plane. At the instant shown the velocity of the ball is 3 fps , and the tension in the cord is:
a. -28.0 lb .
b. -8.0 lb .
c. -6.0 lb .
d. -10.0 lb .
e. -8.6 lb .

8. The two bodies shown move on frictionless planes and are connected by a flexible cord. The tensile load in the cord is:
a. _ 20 lb .
b. - 50 lb .
c. - 60 lb .

d. -80 lb .
e. _ 110 lb .
9. The homogeneous 1000 newton crate moves on small frictionless rollers of negligible mass. The combined normal reaction on the front rollers at B is:
a. -400 N
b. -500 N
c. -700 N
d. -1100 N
e. - 1000 N (i.e. it is tipping).

10. The 32.2 pound homogeneous cylinder is released from rest on the inclined plane. The angular acceleration of the cylinder after it is released will be:
a. $-13.4 \mathrm{rad} / \mathrm{s}^{2}$
b. $-12.4 \mathrm{rad} / \mathrm{s}^{2}$
c. $-3.2 \mathrm{rad} / \mathrm{s}^{2}$
d. $-5.9 \mathrm{rad} / \mathrm{s}^{2}$
e. $-8.3 \mathrm{rad} / \mathrm{s}^{2}$

(8)
11. A slender rod 2 meters long and having a mass of 10 kilograms is released from rest in the horizontal position. It swings counterclockwise in the vertical plane while pivoted about point ' O '. Its angular velocity as it reaches the vertical position is:
a. $\quad 1.2 \mathrm{rad} / \mathrm{s}$
d. $-9.8 \mathrm{rad} / \mathrm{s}$
b. _ $7.7 \mathrm{rad} / \mathrm{s}$
e. - $3.8 \mathrm{rad} / \mathrm{s}$
c. _ $19.6 \mathrm{rad} / \mathrm{s}$

12. Two identical cylinders R and S are released simultaneously from rest at the top of two inclined planes having the same length and slope. Cylinder R rolls without slipping while cylinder S moves down a perfectly smooth plane. The two cylinders reach the bottom of their respective planes:
a. - at the same instant.
b. - with the same angular velocity.
c. - with the same linear velocity of the mass centers.
d. - with the same kinetic energy.
e. _ with none of the above.
13. Carts A and B have weights and initial velocities as shown. The velocity of cart \mathbf{B} immediately after impact is observed to be 4 $\mathrm{ft} / \mathrm{sec}$ to the right. The velocity of cart A immediately after impact is:
a. $-1 \mathrm{fps}^{2}$
b. $-2 \mathrm{fps}^{2}$
c. $-4 \mathrm{fps}^{2}$
d. $-5.6 \mathrm{fps}^{2}$
e. $\ldots 10 \mathrm{fps}^{2}$

14. The carts in problem No. 13 rebound with a coefficient of restitution of:
a. -0.67
b. -0.22
c. -0.40
d. -1.2
e. $\quad 2.0$
