Electricity \& Magnetism

FE Review

Point Charge, Q

- Experiences a force $\mathbf{F}=\mathbf{Q E}$ in the presence of electric field \mathbf{E} (\mathbf{E} is a vector with units volts/meter)
- Work done in moving \mathbf{Q} within the \mathbf{E} field

$$
W=-\int_{0}^{\mathrm{F}} F \cdot d \mathbf{r}
$$

- E field at distance r from charge Q in free space

$$
\begin{array}{ll}
\mathbf{E}=\frac{\mathrm{Q} \mathbf{a}_{\mathrm{r}}}{4 \pi \varepsilon_{0} \mathrm{r}^{2}} & \begin{array}{l}
\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m} \text { (permittivity of free space) } \\
\mathbf{a}_{\mathrm{r}}
\end{array}=\text { unit vector in direction of } \mathbf{E}
\end{array}
$$

- Force on charge Q_{1} a distance r from Q

$$
\mathbf{F}=\mathrm{Q}_{1} \mathbf{E}=\frac{\mathrm{Q}_{1} \mathrm{Q} \mathbf{a}_{\mathrm{r}}}{4 \pi \varepsilon_{0} \mathrm{r}^{2}}
$$

- Work to move Q_{1} closer to Q

$$
\mathrm{W}=-\int_{\mathrm{r}_{1}}^{\mathrm{r}} \frac{\mathrm{Q}_{1} \mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{r}^{2}} \mathbf{a}_{\mathrm{r}} \cdot \mathbf{a}_{\mathrm{r}} \mathrm{dr}=\frac{\mathrm{Q}_{\mathrm{Q}} \mathrm{Q}}{4 \pi \varepsilon_{0}}\left(\frac{1}{\mathrm{r}_{2}}-\frac{1}{\mathrm{r}_{1}}\right)
$$

Voltage

$$
1 \mathrm{~V} \equiv 1 \mathrm{~J} / \mathrm{C}
$$

$$
v=\frac{d w}{d q} \quad \frac{\text { joule }}{\text { coulomb }}=\frac{J}{C}=V \quad(\text { volts })
$$

1 J of work must be done to move a 1-C charge through a potential difference of 1 V .

Current

$$
i=\frac{d q}{d t} \quad \frac{\text { coulomb }}{\text { second }}=\frac{C}{s}=A \text { (amperes) }
$$

Power

$$
p=\frac{d w}{d t}=\frac{d w}{d q} \cdot \frac{d q}{d t}=v i \quad \frac{\text { joule }}{\text { second }}=\frac{J}{s}=W \quad(\text { watts })
$$

Parallel Plate Capacitor

Electric Field between Plates

$$
\begin{aligned}
& \text { Capacitance } \\
& \mathrm{C}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}
\end{aligned}
$$

Potential difference (voltage) between the plates

$$
\mathrm{V}=\mathrm{Ed}=\frac{\mathrm{Qd}}{\varepsilon_{0} \mathrm{~A}}
$$

Resistivity	$\begin{aligned} & \mathrm{L}=\text { length } \\ & \mathrm{A}=\text { cross-sectional area } \\ & \rho=\text { resistivity of material } \\ & \sigma=\text { conductivity of material } \end{aligned}$
Example: Find (A) $\begin{aligned} & \rho_{\mathrm{Cu}}=2 \times 10 \\ & \mathrm{~A}=\pi \mathrm{r}^{2}=\pi(\end{aligned}$ $\mathrm{R}=\frac{\rho}{\rho}$	f the wire has a diameter of 2 mm $\times 10^{-2} \Omega=12.73 \mathrm{~m} \Omega$

KVL - Kirchhoff's Voltage Law

The sum of the voltage drops around a closed path is zero.

KCL - Kirchhoff's Current Law

The sum of the currents leaving a node is zero

Voltage Divider

$$
v_{1}=\frac{R_{1}}{R_{1}+R_{2}+R_{3}+R_{4}} v_{s}
$$

Current Divider

$$
\left.\left.\left.\mathrm{i}_{1}=\frac{\frac{1}{R_{1}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}} i_{\text {s }} \quad i_{i_{s}} \quad \sum_{R_{1}}^{i_{1}}\right\} R_{2}\right\}_{R_{3}}\right\}_{R_{4}}
$$

Example: Find v_{x} and v_{y} and the power absorbed by the $6-\Omega$ resistor.

$$
\mathrm{v}_{\mathrm{x}}=\frac{2}{2+4}(6 \mathrm{~V})=2 \mathrm{~V}
$$

$$
\mathrm{v}_{\mathrm{y}}=\frac{2}{2+2} \mathrm{v}_{\mathrm{x}}=1 \mathrm{~V}
$$

$$
\mathrm{P}_{6 \Omega}=\frac{\mathrm{v}^{2}}{\mathrm{R}}=\frac{\mathrm{v}_{\mathrm{y}}^{2}}{6}=\frac{1}{6} \mathrm{~W}
$$

Node Voltage Analysis

Node 1 is connected directly to ground by a voltage source $\rightarrow \mathrm{v}_{1}=10 \mathrm{~V}$

All nodes not connected to a voltage source are KCL equations
\downarrow
Node 2 is a KCL equation

Mesh Current Analysis

Find the mesh currents i_{1} and i_{2} in the circuit

Look at current sources first

Mesh 2 has a current source in its outer branch

$$
\mathrm{i}_{2}=-2 \mathrm{~A}
$$

All meshes not containing current sources are KVL equations

$$
\begin{array}{lr}
\text { KVL at Mesh } 1 & \\
\begin{array}{lr}
-10+4 \mathrm{i}_{1}+2\left(\mathrm{i}_{1}-\mathrm{i}_{2}\right)=0 & \text { Find the power absorbed by the } 4-\Omega \text { resistor } \\
\mathrm{i}_{4}=\frac{10+2 \mathrm{i}_{2}}{6}=\frac{10+2(-2)}{6}=1 \mathrm{~A} &
\end{array} \mathrm{i}^{2} \mathrm{R}=(1)^{2}(4)=4 \mathrm{~W}
\end{array}
$$

RL Circuit

$-v_{s}+\operatorname{Ri}+L \frac{\mathrm{di}}{\mathrm{dt}}=0$
$\frac{\mathrm{di}}{\mathrm{dt}}+\frac{\mathrm{R}}{\mathrm{L}} \mathrm{i}=\frac{1}{\mathrm{~L}} \mathrm{v}_{\mathrm{s}}$

$$
\begin{aligned}
& \text { Put in some numbers } \\
& \mathrm{R}=2 \Omega \\
& \mathrm{~L}=4 \mathrm{mH} \\
& \mathrm{v}_{\mathrm{s}}(\mathrm{t})=12 \mathrm{~V} \\
& \mathrm{i}(0)=0 \mathrm{~A} \\
& \rightarrow \frac{\mathrm{di}}{\mathrm{dt}}+500 \mathrm{i}=3000 \\
& \mathrm{i}_{\mathrm{n}}(\mathrm{t})=\mathrm{Ae}^{-\mathrm{Rt} / \mathrm{L}}=\mathrm{Ae}^{-500 \mathrm{t}} \\
& -i_{p}(t)=K \\
& 0+500 \mathrm{~K}=3000 \rightarrow \mathrm{~K}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{R}}=6 \\
& \mathrm{i}(\mathrm{t})=\mathrm{Ae}^{-500 \mathrm{t}}+6 \\
& \mathrm{i}(0)=0 \rightarrow 0=\mathrm{Ae}^{-500(0)}+6 \rightarrow \mathrm{~A}=-6 \\
& i(t)=\frac{V_{s}}{R}\left(1-e^{-R t / L}\right)=6\left(1-e^{-500 t}\right) A \\
& \mathrm{v}(\mathrm{t})=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}=0.004 \frac{\mathrm{~d}}{\mathrm{dt}}\left(6-6 \mathrm{e}^{-500 \mathrm{t}}\right)=12 \mathrm{e}^{-500 t} \mathrm{~V}
\end{aligned}
$$

DC Steady-State

$$
\mathrm{v}(0)=5 \rightarrow 5=\mathrm{Ae}^{-250(0)}+12 \rightarrow \mathrm{~A}=-7
$$

$$
\mathrm{v}(\mathrm{t})=\mathrm{v}_{\mathrm{s}}-\left(\mathrm{v}_{\mathrm{s}}-\mathrm{v}_{0}\right) \mathrm{e}^{-t / R \mathrm{RC}}=12-7 \mathrm{e}^{-250 \mathrm{t}} \mathrm{~V}
$$

$$
\mathrm{i}(\mathrm{t})=\mathrm{C} \frac{\mathrm{dv}}{\mathrm{dt}}=0.002 \frac{\mathrm{~d}}{\mathrm{dt}}\left(12-7 \mathrm{e}^{-250 \mathrm{t}}\right)=3.5 \mathrm{e}^{-250 \mathrm{t}} \mathrm{~A}
$$

Impedance		
	$\mathrm{Z}=\mathrm{R}=\mathrm{R} \angle 0^{\circ}$	$\stackrel{1}{\square} \sim_{\sim}^{R}$
	$\mathrm{Z}=\mathrm{j} \omega \mathrm{L}=\omega \mathrm{L} \angle 90^{\circ}$	$\xrightarrow[+]{\mathrm{I}} \bigcap_{\mathrm{l}}^{\mathrm{j} \omega \mathrm{~L}}$
	$\mathrm{Z}=\frac{1}{\mathrm{j} \omega \mathrm{C}}=\frac{1}{\omega \mathrm{C}} \angle-90^{\circ}$	$\begin{aligned} & \stackrel{1}{\mathrm{I} \omega \mathrm{C}} \\ & +\mathrm{v} . \end{aligned}$

Example:	$\mathrm{v}(\mathrm{t})=2000 \cos (100 \mathrm{t}) \mathrm{V}$

Example:

Find the total real power supplied by the source in the balanced wye-connected circuit

$\mathbf{I}_{\mathrm{aA}}=\mathbf{I}_{\mathrm{AN}}=\frac{\mathbf{V}_{\mathrm{AN}}}{\mathrm{Z}_{\mathrm{LN}}}=\frac{540 \angle 0^{\circ}}{270+\mathrm{j} 270}=1.41 \angle-45^{\circ} \mathrm{A}$
$\mathrm{S}=3 \mathbf{V}_{\mathrm{AN}} \mathbf{I}_{\mathbf{A N}}{ }^{*}=3\left(540 \angle 0^{\circ}\right)\left(1.41 \angle 45^{\circ}\right)=2291 \angle 45^{\circ} \mathrm{VA}=1620+\mathrm{j} 1620 \mathrm{VA}$

Ideal Operational Amplifier (Op Amp)

With negative feedback
$\mathrm{i}=0$
$\Delta \mathrm{v}=0$

Linear Amplifier

$$
\begin{aligned}
& \text { KVL: }-v_{\text {in }}+R_{1} i-\not \lambda_{v}=0 \rightarrow i=\frac{v_{\text {in }}}{R_{1}} \\
& \text { KVL: }-v_{\text {in }}+R_{1} i+R_{2} i+v_{\text {out }}=0 \\
& -v_{\text {in }}+R_{1}\left(\frac{v_{\text {in }}}{R_{1}}\right)+R_{2}\left(\frac{v_{\text {in }}}{R_{1}}\right)+v_{\text {out }}=0 \\
& v_{\text {out }}=-\frac{R_{2}}{R_{1}} v_{\text {in }}
\end{aligned}
$$

mV or $\mu \mathrm{V}$ reading from sensor
$0-5 \mathrm{~V}$ output to A / D converter

Example:

A cylindrical coil of wire has an air core and 1000 turns. It is 1 m long with a diameter of 2 mm so has a relatively uniform field. Find the current necessary to achieve a magnetic flux density of 2 T .

$\int \mathbf{H} \cdot \mathrm{d} \boldsymbol{l}=\mathrm{NI}_{0}$
$\mathrm{HL}=\mathrm{NI}_{0}$
$\left(\frac{\mathrm{B}}{\mu_{0}}\right) \mathrm{L}=\mathrm{NI}_{0} \rightarrow \mathrm{I}=\frac{\mathrm{BL}}{\mathrm{N} \mu_{0}}=\frac{(2 \mathrm{~T})(\mathrm{lm})}{1000\left(4 \pi \times 10^{-7}\right)}=1590 \mathrm{~A}$

