Electricity \& Magnetism

FE Review

Voltage

$$
v=\frac{d w}{d q} \quad \frac{\text { joule }}{\text { coulomb }}=\frac{J}{C}=V \quad(\text { volts })
$$

$1 \mathrm{~V} \equiv 1 \mathrm{~J} / \mathrm{C}$ 1 J of work must be done to move a 1-C charge through a potential difference of 1 V .

Current

$$
i=\frac{d q}{d t} \quad \frac{\text { coulomb }}{\operatorname{second}}=\frac{C}{s}=A \quad(\text { amperes })
$$

Power

$$
p=\frac{d w}{d t}=\frac{d w}{d q} \cdot \frac{d q}{d t}=v i \quad \frac{\text { joule }}{\operatorname{second}}=\frac{J}{s}=W \quad(w a t t s)
$$

Point Charge, Q

- Experiences a force $\mathbf{F}=\mathbf{Q E}$ in the presence of electric field \mathbf{E} (E is a vector with units volts/meter)
- Work done in moving \mathbf{Q} within the \mathbf{E} field

$$
\mathrm{W}=-\int_{0}^{\mathrm{r}_{1}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}
$$

- E field at distance r from charge Q in free space

$$
\mathbf{E}=\frac{\mathrm{Q} \mathbf{a}_{\mathrm{r}}}{4 \pi \varepsilon_{0} \mathrm{r}^{2}} \quad \begin{array}{ll}
\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m} \quad(\text { permittivity of free space }) \\
\mathbf{a}_{\mathrm{r}}=\text { unit vector in direction of } \mathbf{E}
\end{array}
$$

- Force on charge Q_{1} a distance r from Q

$$
\mathbf{F}=\mathrm{Q}_{1} \mathbf{E}=\frac{\mathrm{Q}_{1} \mathrm{Q} \mathbf{a}_{\mathrm{r}}}{4 \pi \varepsilon_{0} \mathrm{r}^{2}}
$$

- Work to move Q_{1} closer to Q

$$
\mathrm{W}=-\int_{\mathrm{r}_{1}}^{\mathrm{r}_{2}} \frac{\mathrm{Q}_{1} \mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{r}^{2}} \mathbf{a}_{\mathrm{r}} \cdot \mathbf{a}_{\mathrm{r}} \mathrm{dr}=\frac{\mathrm{Q}_{1} \mathrm{Q}}{4 \pi \varepsilon_{0}}\left(\frac{1}{\mathrm{r}_{2}}-\frac{1}{\mathrm{r}_{1}}\right)
$$

Parallel Plate Capacitor

$Q=$ charge on plate A=area of plate $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$

Electric Field between Plates

Capacitance

$$
\mathrm{C}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}
$$

Potential difference (voltage) between the plates

$$
\mathrm{V}=\mathrm{Ed}=\frac{\mathrm{Qd}}{\varepsilon_{0} \mathrm{~A}}
$$

Example: Find the resistance of a $2-\mathrm{m}$ copper wire if the wire has a diameter of 2 mm .

$$
\begin{gathered}
\rho_{\mathrm{Cu}}=2 \times 10^{-8} \Omega \cdot \mathrm{~m} \\
\mathrm{~A}=\pi \mathrm{r}^{2}=\pi(0.001)^{2}
\end{gathered}
$$

$$
\mathrm{R}=\frac{\rho \mathrm{L}}{\mathrm{~A}}=\frac{\left(2 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)(2 \mathrm{~m})}{\pi(0.001)^{2} \mathrm{~m}^{2}}=1.273 \times 10^{-2} \Omega=12.73 \mathrm{~m} \Omega
$$

Parallel Capacitors

$$
\mathrm{C}_{\mathrm{p}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\mathrm{C}_{4}
$$

Series Capacitors

$$
\mathrm{C}_{\mathrm{s}}=\frac{1}{\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}+\frac{1}{\mathrm{C}_{4}}}
$$

KVL - Kirchhoff's Voltage Law

The sum of the voltage drops around a closed path is zero.

KCL - Kirchhoff's Current Law

The sum of the currents leaving a node is zero.

Voltage Divider

$$
\mathrm{v}_{1}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}} \mathrm{v}_{\mathrm{s}}
$$

Current Divider

$$
i_{1}=\frac{\frac{1}{R_{1}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}} i_{s}
$$

Example: Find v_{x} and v_{y} and the power absorbed by the $6-\Omega$ resistor.

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{x}}=\frac{2}{2+4}(6 \mathrm{~V})=2 \mathrm{~V} \\
& \mathrm{v}_{\mathrm{y}}=\frac{2}{2+2} \mathrm{v}_{\mathrm{x}}=1 \mathrm{~V} \\
& \mathrm{P}_{6 \Omega}=\frac{\mathrm{v}^{2}}{\mathrm{R}}=\frac{\mathrm{v}_{\mathrm{y}}^{2}}{6}=\frac{1}{6} \mathrm{~W}
\end{aligned}
$$

Node Voltage Analysis

Find the node voltages, v_{1} and v_{2}

Look at voltage sources first

Node 1 is connected directly to ground by a voltage source $\rightarrow \mathrm{v}_{1}=10 \mathrm{~V}$

All nodes not connected to a voltage source are KCL equations

KCL at Node 2

$$
\begin{aligned}
& \frac{\mathrm{v}_{2}-\mathrm{v}_{1}}{4}+\frac{\mathrm{v}_{2}}{2}-2=0 \\
& -\frac{1}{4} \mathrm{v}_{1}+\frac{3}{4} \mathrm{v}_{2}=2 \quad \rightarrow \quad-\mathrm{v}_{1}+3 \mathrm{v}_{2}=8 \\
& \mathrm{v}_{2}=\frac{8+\mathrm{v}_{1}}{3}=\frac{8+10}{3}=6 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{v}_{1}=10 \mathrm{~V} \\
& \mathrm{v}_{2}=6 \mathrm{~V}
\end{aligned}
$$

Mesh Current Analysis

Find the mesh currents i_{1} and i_{2} in the circuit

Look at current sources first

Mesh 2 has a current source in its outer branch

$$
\mathrm{i}_{2}=-2 \mathrm{~A}
$$

All meshes not containing current sources are KVL equations

KVL at Mesh 1

$$
\begin{gathered}
-10+4 i_{1}+2\left(i_{1}-i_{2}\right)=0 \\
i_{1}=\frac{10+2 i_{2}}{6}=\frac{10+2(-2)}{6}=1 \mathrm{~A}
\end{gathered}
$$

Find the power absorbed by the $4-\Omega$ resistor

$$
\mathrm{P}_{4 \Omega}=\mathrm{i}^{2} \mathrm{R}=(1)^{2}(4)=4 \mathrm{~W}
$$

RL Circuit

$$
\begin{array}{r}
-v_{s}+R i+L \frac{d i}{d t}=0 \\
\frac{d i}{d t}+\frac{R}{L} i=\frac{1}{L} v_{s}
\end{array}
$$

Put in some numbers

$$
\begin{gathered}
\mathrm{R}=2 \Omega \\
\mathrm{~L}=4 \mathrm{mH} \\
\mathrm{v}_{\mathrm{s}}(\mathrm{t})=12 \mathrm{~V} \\
\mathrm{i}(0)=0 \mathrm{~A}
\end{gathered}
$$

$$
\left[\begin{array}{l}
\text { (} \frac{d i}{d t}+500 i=3000 \\
\\
i_{n}(t)=A e^{-R t / L}=A e^{-500 t} \\
i_{p}(t)=K
\end{array} \quad \begin{array}{l}
0+500 K=3000 \quad \rightarrow \quad K=\frac{v_{s}}{R}=6
\end{array}\right.
$$

$$
\begin{aligned}
& i(t)=A e^{-500 t}+6 \\
& i(0)=0 \quad \rightarrow \quad 0=A e^{-500(0)}+6 \quad \rightarrow \quad A=-6 \\
& i(t)=\frac{v_{s}}{R}\left(1-e^{-R t / L}\right)=6\left(1-e^{-500 t}\right) A
\end{aligned}
$$

$$
\mathrm{v}(\mathrm{t})=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}=0.004 \frac{\mathrm{~d}}{\mathrm{dt}}\left(6-6 \mathrm{e}^{-500 \mathrm{t}}\right)=12 \mathrm{e}^{-500 \mathrm{t}} \mathrm{~V}
$$

RC Circuit

$$
\begin{aligned}
& C \frac{d v}{d t}+\frac{v-v_{s}}{R}=0 \\
& \frac{d v}{d t}+\frac{1}{R C} v=\frac{1}{R C} v_{s}
\end{aligned}
$$

Put in some numbers

$$
\begin{gathered}
\mathrm{R}=2 \Omega \\
\mathrm{C}=2 \mathrm{mF} \\
\mathrm{v}_{\mathrm{s}}(\mathrm{t})=12 \mathrm{~V} \\
\mathrm{v}(0)=5 \mathrm{~V}
\end{gathered}
$$

$$
\longrightarrow \begin{aligned}
& \frac{d v}{d t}+250 v=3000 \\
& v_{n}(t)=A e^{-t / R C}=A e^{-250 t} \\
& v_{p}(t)=K
\end{aligned}
$$

$$
0+250 \mathrm{~K}=3000 \rightarrow \mathrm{~K}=\mathrm{v}_{\mathrm{s}}=12
$$

$$
\mathrm{v}(\mathrm{t})=\mathrm{Ae} \mathrm{e}^{-250 \mathrm{t}}+12
$$

$$
\mathrm{v}(0)=5 \quad \rightarrow \quad 5=\mathrm{Ae}^{-250(0)}+12 \quad \rightarrow \quad \mathrm{~A}=-7
$$

$$
v(t)=v_{s}-\left(v_{s}-v_{0}\right) e^{-t / R C}=12-7 e^{-250 t} V
$$

$$
\mathrm{i}(\mathrm{t})=\mathrm{C} \frac{\mathrm{dv}}{\mathrm{dt}}=0.002 \frac{\mathrm{~d}}{\mathrm{dt}}\left(12-7 \mathrm{e}^{-250 \mathrm{t}}\right)=3.5 \mathrm{e}^{-250 \mathrm{t}} \mathrm{~A}
$$

DC Steady-State

$\mathrm{v}=\mathrm{L} / \mathrm{di} \mathrm{dt}^{0}=0 \longrightarrow$ Short Circuit
$\mathrm{i}=$ constant

Example:
Find the DC steady-state voltage, v, in the following circuit.

Complex Arithmetic

a+jb

$A e^{j \theta}$

Plot $z=a+j b$ as an ordered pair on the real and imaginary axes

Complex Conjugate

$$
(a+j b)^{*}=a-j b \quad(A \angle \theta)^{*}=A \angle-\theta
$$

$$
\begin{aligned}
& \tan \theta=\frac{b}{a} \\
& |z|=|a+j b|=\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

Euler's Identity

$$
\mathrm{e}^{\mathrm{j} \theta}=\cos \theta+\mathrm{j} \sin \theta
$$

Complex Arithmetic

$$
\begin{aligned}
& \mathrm{z}_{1}=\mathrm{Ae}^{\mathrm{j} \theta}=\mathrm{A} \angle \theta=\mathrm{a}_{x}+j a_{y} \\
& \mathrm{z}_{2}=\mathrm{Be}^{\mathrm{j} \varphi}=\mathrm{B} \angle \varphi=b_{x}+j b_{y}
\end{aligned}
$$

$$
\begin{aligned}
\frac{20 \angle 40^{\circ}}{5 \angle 60^{\circ}} & =\frac{20}{5} \angle\left(40^{\circ}-60^{\circ}\right) \\
& =4 \angle-20^{\circ}
\end{aligned}
$$

Addition

$\mathrm{z}_{1}+\mathrm{z}_{2}=\left(\mathrm{a}_{\mathrm{x}}+\mathrm{ja} \mathrm{a}_{\mathrm{y}}\right)+\left(\mathrm{b}_{\mathrm{x}}+\mathrm{j} \mathrm{b}_{\mathrm{y}}\right)=\left(\mathrm{a}_{\mathrm{x}}+\mathrm{b}_{\mathrm{x}}\right)+\mathrm{j}\left(\mathrm{a}_{\mathrm{y}}+\mathrm{b}_{\mathrm{y}}\right)$

Multiplication

$$
\begin{aligned}
\mathrm{z}_{1} \cdot \mathrm{z}_{2} & =(\mathrm{A} \angle \theta)(\mathrm{B} \angle \varphi) \\
& =\mathrm{AB} \angle(\theta+\varphi)
\end{aligned}
$$

Division

$$
\begin{aligned}
\frac{\mathrm{z}_{1}}{\mathrm{z}_{2}} & =\frac{\mathrm{A} \angle \theta}{\mathrm{~B} \angle \varphi} \\
& =\frac{\mathrm{A}}{\mathrm{~B}} \angle(\theta-\varphi)
\end{aligned}
$$

A complex number representing a sinusoidal current or voltage.

$$
\mathrm{V}_{\mathrm{m}} \cos (\omega \mathrm{t}+\varphi) \quad \rightarrow \quad \mathrm{V}_{\mathrm{m}} \angle \varphi
$$

Only for:

- Sinusoidal sources
- Steady-state

Impedance

$$
\mathrm{Z}=\frac{\mathbf{V}}{\mathbf{I}} \quad \text { units }=\text { ohms }(\Omega)
$$

Admittance

$$
\mathrm{Y}=\frac{\mathbf{I}}{\mathbf{V}} \quad \text { units }=\text { Siemens }(\mathrm{S})
$$

Phasors

Converting from sinusoid to phasor

$$
\begin{aligned}
& 20 \cos \left(40 \mathrm{t}+15^{\circ}\right) \mathrm{A} \rightarrow 20 \angle 15^{\circ} \mathrm{A} \\
& 100 \cos \left(10^{3} \mathrm{t}\right) \mathrm{V} \rightarrow 100 \angle 0^{\circ} \mathrm{V}
\end{aligned}
$$

$$
6 \sin \left(100 \mathrm{t}+10^{\circ}\right) \mathrm{A}=6 \cos \left(100 \mathrm{t}+10^{\circ}-90^{\circ}\right) \mathrm{A} \rightarrow 6 \angle-80^{\circ} \mathrm{A}
$$

Ohm's Law for Phasors

$$
\mathbf{V}=\mathbf{Z} \mathbf{I}
$$

Ohm's Law
Voltage Divider KVL KCL

Mesh Current Analysis
Node Voltage Analysis

Impedance

$$
\stackrel{\mathrm{i}(\mathrm{t})}{\longrightarrow} \mathrm{M}^{\mathbf{R}} \quad \mathrm{Z}=\mathrm{R}=\mathrm{R} \angle 0^{\circ}
$$

Example: Find the steady-state output, $\mathrm{v}(\mathrm{t})$.

$$
\begin{aligned}
\mathrm{I} & =\frac{\frac{1}{20+1.38+\mathrm{j} 3.45}}{\frac{1}{-\mathrm{j} 50}+\frac{1}{20+1.38+\mathrm{j} 3.45}} 5 \angle 0^{\circ} \\
& =4.88 \angle-24.67^{\circ} \mathrm{A} \\
\mathrm{~V} & =\mathrm{ZI}=20\left(4.88 \angle-24.67^{\circ}\right) \\
& =97.61 \angle-24.67^{\circ} \mathrm{V}
\end{aligned} \quad \begin{aligned}
& \mathrm{v}(\mathrm{t})=97.61 \cos \left(10^{3} \mathrm{t}-24.67^{\circ}\right) \mathrm{V}
\end{aligned}
$$

Source Transformations

Two special cases

Example: Find the steady-state voltage, $\mathrm{v}_{\text {out }}(\mathrm{t})$

$$
\mathrm{I}=\frac{10 \angle 0^{\circ}}{-\mathrm{j} 2}=5 \angle 90^{\circ} \mathrm{A}
$$

$$
Z=\frac{1}{\frac{1}{-j 2}+\frac{1}{-j 2}}=-j 1 \Omega
$$

$$
\mathrm{Z}=\frac{1}{\frac{1}{\mathrm{j} 1}+\frac{1}{\mathrm{j} 1}}=\mathrm{j} 0.5 \Omega
$$

No current flows through the impedance

$$
\begin{gathered}
\mathbf{V}_{\text {out }}=2.5 \angle 0^{\circ} \mathrm{V} \\
\mathrm{v}_{\text {out }}(\mathrm{t})=2.5 \cos (2 \mathrm{t}) \mathrm{V}
\end{gathered}
$$

AC Power

$$
\begin{array}{lll}
\text { Complex Power } & \mathrm{S}=\frac{1}{2} \mathbf{V} \mathbf{I}^{*}=\mathrm{P}+\mathrm{jQ} & \text { units }=\mathrm{VA} \text { (volt-amperes) } \\
\text { Average Power } & \mathrm{P}=\frac{1}{2} \mathrm{~V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \cos \theta & \text { units }=\mathrm{W} \text { (watts) }
\end{array}
$$

a.k.a. "Active" or "Real" Power

> Reactive Power

$$
\mathrm{Q}=\frac{1}{2} \mathrm{~V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \sin \theta
$$

$$
\mathrm{PF}=\cos \theta
$$

θ = impedance angle

Example:

$$
v(t)=2000 \cos (100 t) V
$$

Current, I

$$
I=\frac{V}{Z}=\frac{2000 \angle 0^{\circ}}{20+\mathrm{j} 50}=37.14 \angle-68.20^{\circ} \mathrm{A}
$$

Power Factor

$\mathrm{PF}=\cos \theta=\cos \left(68.20^{\circ}\right)=0.371$ lagging

$$
\mathbf{V}=2000 \angle 0^{\circ} \mathrm{V}
$$

Complex Power Absorbed

$$
\begin{aligned}
\mathrm{S} & =\frac{1}{2} \mathbf{V I}^{*}=\frac{1}{2}\left(2000 \angle 0^{\circ}\right)\left(37.14 \angle+68.20^{\circ}\right) \\
& =37139 \angle 68.20^{\circ} \mathbf{V A} \\
& =13793+\mathrm{j} 34483 \mathrm{VA}
\end{aligned}
$$

Average Power Absorbed

$$
\mathrm{P}=13793 \mathrm{~W}
$$

Power Factor Correction

Add a capacitor in parallel with the load.

$$
S_{\text {total }}=S+S_{\text {cap }}=(13793+\mathrm{j} 34483)+\left(0+j Q_{\text {cap }}\right)
$$

$\mathrm{Q}_{\text {cap }}=\mathrm{P} \tan \theta_{\text {new }}-\mathrm{Q}=13793 \tan \left(31.79^{\circ}\right)-34483=-24934 \mathrm{VAR}$

$$
\mathrm{Q}_{\text {cap }}=-25934 \mathrm{VAR} \rightarrow \mathrm{~S}_{\text {cap }}=-\mathrm{j} 25934 \mathrm{VA}
$$

S for an ideal capacitor

$$
v(t)=2000 \cos (100 t) V
$$

$$
\mathrm{S}=-\mathrm{j} \frac{1}{2} \omega \mathrm{CV}_{\mathrm{m}}^{2}
$$

$$
-\mathrm{j} 25934=-\mathrm{j} \frac{1}{2}(100) \mathrm{C}(2000)^{2}
$$

$$
\mathrm{C}=0.13 \mathrm{mF}
$$

$$
\begin{aligned}
S_{\text {total }} & =S+S_{\text {cap }}=(13793+\mathrm{j} 34483)+(0-\mathrm{j} 25934) \\
& =13793+\mathrm{j} 8549 \mathrm{VA}=16227.5 \angle 31.79^{\circ} \mathrm{VA}
\end{aligned}
$$

Current after capacitor added

$$
\mathbf{S}=\frac{1}{2} \mathbf{V} \mathbf{I}^{*} \rightarrow \mathbf{I}=\left(\frac{2 \mathrm{~S}}{\mathbf{V}}\right)^{*}=\left(\frac{2(13793+\mathrm{j} 8549)}{2000 \angle 0^{\circ}}\right)^{*}=16.23 \angle-31.79^{\circ} \mathrm{A}
$$

RMS Current \& Voltage

a.k.a. "Effective" current or voltage

$$
V_{\mathrm{rms}}=\left(\frac{1}{T} \int_{0}^{\mathrm{T}} \mathrm{v}^{2} \mathrm{dt}\right)^{1 / 2} \quad I_{\mathrm{rms}}=\left(\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{i}^{2} \mathrm{dt}\right)^{1 / 2}
$$

RMS value of a sinusoid

$$
\mathrm{A} \cos (\omega \mathrm{t}+\varphi) \quad \rightarrow \quad \frac{\mathrm{A}}{\sqrt{2}}
$$

$$
\mathrm{P}=\mathrm{V}_{\mathrm{rms}} \cdot \mathrm{I}_{\mathrm{rms}} \cos \theta
$$

Balanced Three-Phase Systems

Balanced Three-Phase Systems

$$
\begin{aligned}
& \text { Line Currents } \\
& \mathbf{I}_{\mathrm{aA}}=\mathbf{I}_{\mathrm{AB}}-\mathbf{I}_{\mathbf{C A}}=\left(\sqrt{3} \angle-30^{\circ}\right) \mathbf{I}_{\mathrm{AB}}=\mathrm{I}_{\mathrm{L}} \angle \psi \\
& \mathbf{I}_{\mathbf{b B}}=\mathrm{I}_{\mathrm{L}} \angle \psi-120^{\circ} \\
& \mathbf{I}_{\mathbf{c C}}=\mathrm{I}_{\mathrm{L}} \angle \psi+120^{\circ}
\end{aligned}
$$

Line Voltages

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{a b}}=\mathrm{V}_{\mathrm{m}} \angle 0^{\circ} \\
& \mathbf{V}_{\mathbf{b c}}=\mathrm{V}_{\mathrm{m}} \angle-120^{\circ} \\
& \mathbf{V}_{\mathbf{c a}}=\mathrm{V}_{\mathrm{m}} \angle 120^{\circ}
\end{aligned}
$$

Phase Currents

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{AB}}=\frac{\mathbf{V}_{\mathrm{AB}}}{\mathrm{Z}_{\mathrm{LL}}}=\mathrm{I}_{\mathrm{L}} \angle \varphi \\
& \mathbf{I}_{\mathrm{BC}}=\frac{\mathbf{V}_{\mathrm{BC}}}{\mathrm{Z}_{\mathrm{LL}}}=\mathrm{I}_{\mathrm{L}} \angle \varphi-120^{\circ} \\
& \mathbf{I}_{\mathrm{CA}}=\frac{\mathbf{V}_{\mathrm{CA}}}{\mathrm{Z}_{\mathrm{LL}}}=\mathrm{I}_{\mathrm{L}} \angle \varphi+120^{\circ}
\end{aligned}
$$

Currents and Voltages are specified in RMS

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{L}}=\text { line voltage }=\left|\mathbf{V}_{\mathrm{ab}}\right| \\
& \mathrm{I}_{\mathrm{L}}=\text { line current }=\left|\mathbf{I}_{\mathrm{at}}\right| \\
& \theta=\text { impedance angle }=\angle \mathrm{Z}
\end{aligned}
$$

Average Power

Complex Power for Y-connected load

$$
\begin{aligned}
\mathrm{S} & =3 \mathbf{V}_{\mathrm{AN}} \mathbf{I}_{\mathrm{AN}}^{*} \\
& =\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \angle \theta
\end{aligned}
$$

Complex Power for Δ-connected load

$$
\begin{aligned}
\mathbf{S} & =3 \mathbf{V}_{\mathbf{A B}} \mathbf{I}_{\mathbf{A B}}^{*} \\
& =\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \angle \theta
\end{aligned}
$$

$$
\mathrm{P}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \theta
$$

Power Factor

$$
\mathrm{PF}=\cos \theta \quad \text { (leading or lagging) }
$$

Example:

Find the total real power supplied by the source in the balanced wye-connected circuit

Given:

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{an}}=540 \angle 0^{\circ} \mathrm{V} \\
& \mathrm{Z}_{\mathrm{LN}}=270+\mathrm{j} 270 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{aA}}=\mathbf{I}_{\mathrm{AN}}=\frac{\mathbf{V}_{\mathrm{AN}}}{\mathrm{Z}_{\mathrm{LN}}}=\frac{540 \angle 0^{\circ}}{270+\mathrm{j} 270}=1.41 \angle-45^{\circ} \mathrm{A} \\
& \mathrm{~S}=3 \mathbf{V}_{\mathrm{AN}} \mathbf{I}_{\mathrm{AN}}^{*}=3\left(540 \angle 0^{\circ}\right)\left(1.41 \angle 45^{\circ}\right)=2291 \angle 45^{\circ} \mathrm{VA}=1620+\mathrm{j} 1620 \mathrm{VA}
\end{aligned}
$$

$$
P=1620 \mathrm{~W}
$$

Ideal Operational Amplifier (Op Amp)

With negative feedback $\mathrm{i}=0$
$\Delta v=0$

Linear Amplifier

mV or $\mu \mathrm{V}$ reading from sensor

$$
\begin{array}{ll}
\mathrm{KVL}: & -v_{\text {in }}+R_{1} i-\not v_{v}=0 \rightarrow i=\frac{v_{\text {in }}}{R_{1}} \\
\text { KVL: } & -v_{\text {in }}+R_{1} i+R_{2} i+v_{\text {out }}=0 \\
& -v_{\text {in }}+R_{1}\left(\frac{v_{\text {in }}}{R_{1}}\right)+R_{2}\left(\frac{v_{\text {in }}}{R_{1}}\right)+v_{\text {out }}=0 \\
& v_{\text {out }}=-\frac{R_{2}}{R_{1}} v_{\text {in }}
\end{array}
$$

$0-5 \mathrm{~V}$ output to A / D converter

Magnetic Fields
 $$
\Phi_{S} \mathbf{B} \cdot \mathrm{~d} \mathbf{s}=0 \quad \oint_{l} \mathbf{H} \cdot \mathrm{~d} \boldsymbol{l}=\oint_{\mathrm{S}} \mathbf{J} \cdot \mathrm{~d} \mathbf{S}=\mathrm{I}
$$

Net magnetic flux through a closed surface is zero.

B - magnetic flux density (tesla)
\mathbf{H} - magnetic field strength (A/m)
J - current density

$$
\mathbf{B}=\mu \mathbf{H}
$$

Magnetic Flux ϕ passing through a surface

$$
\phi=\int_{S} \mathbf{B} \cdot \mathrm{~d} \mathbf{S}
$$

Energy stored in the magnetic field

$$
\mathrm{w}=\frac{1}{2} \iiint_{\mathrm{V}} \mu|\mathrm{H}|^{2} \mathrm{dV}
$$

Enclosing a surface with N turns of wire produces a voltage across the terminals

$$
\mathrm{v}=-\mathrm{N} \frac{\mathrm{~d} \phi}{\mathrm{dt}}
$$

Magnetic field produces a force perpendicular to the current direction and the magnetic field direction

$$
\mathbf{F}=\mathbf{I L} \times \mathbf{B}
$$

Example:

A coaxial cable with an inner wire of radius 1 mm carries 10-A current. The outer cylindrical conductor has a diameter of 10 mm and carries a 10-A uniformly distributed current in the opposite direction. Determine the approximate magnetic energy stored per unit length in this cable. Use μ_{0} for the permeablility of the material between the wire and conductor.

$$
\begin{aligned}
& \int \mathbf{H} \cdot \mathrm{d} \boldsymbol{l}=\mathrm{H}_{\varphi} 2 \pi \mathrm{r}=\mathrm{I}_{0}=10 \mathrm{~A} \\
& \mathrm{H}_{\varphi}=\frac{10}{2 \pi \mathrm{r}} \quad \text { for } \quad 10^{-3} \mathrm{~m}<\mathrm{r}<10^{-2} \mathrm{~m}
\end{aligned}
$$

$$
\mathrm{w}=\frac{1}{2} \iiint_{\mathrm{V}} \mu|\mathrm{H}|^{2} \mathrm{~d} \mathrm{~V}=\frac{1}{2} \int_{0}^{1} \int_{0}^{2 \pi} \int_{0.001}^{0.01} \mu_{0}\left(\frac{10}{2 \pi \mathrm{r}}\right)^{2} \operatorname{rdrd} \varphi \mathrm{~d} \mathrm{z}=18.3 \mu_{0} \mathrm{~J}
$$

Example:

A cylindrical coil of wire has an air core and 1000 turns. It is 1 m long with a diameter of 2 mm so has a relatively uniform field. Find the current necessary to achieve a magnetic flux density of 2 T .

$$
\begin{aligned}
\int \mathbf{H} \cdot \mathrm{d} \boldsymbol{l} & =\mathrm{NI}_{0} \\
\mathrm{HL} & =\mathrm{NI}_{0} \\
\left(\frac{\mathrm{~B}}{\mu_{0}}\right) \mathrm{L} & =\mathrm{NI}_{0} \rightarrow \mathrm{I}=\frac{\mathrm{BL}}{\mathrm{~N} \mu_{0}}=\frac{(2 \mathrm{~T})(1 \mathrm{~m})}{1000\left(4 \pi \times 10^{-7}\right)}=1590 \mathrm{~A}
\end{aligned}
$$

Questions?

