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MECHANICS OF MATERIALS REVIEW 
 
Notation: 

σ - normal stress (psi or Pa) 
τ- shear stress (psi or Pa) 
ε - normal strain (in/in or m/m) 
γ - shearing strain (in/in or m/m) 
I - area moment of inertia (in4 or m4) 
J - polar area moment  

of inertia (in4 or m4) 
N - revolutions per minute 
E - modulus of elasticity (psi or Pa) 
G - modulus of rigidity (psi or Pa) 

ν - Poisson’s ratio 
α - coefficient of thermal expansion 
 (/°F or /°C) 
M - bending moment in beams 
T - torque in shafts 
∆T - temperature change (°F or °C) 
hp - horsepower (1 hp = 550 ft-lb/sec) 

F.S. - factor of safety = 
failure load

allowed load  

εt = α∆T - thermal strain 
 
Section 1:  Introduction 

 
a.  Stress: force per unit area acting on a plane 

Normal stress (σ): force acts perpendicular to the plane. 
Shear stress (τ): force acts parallel to the plane 
 

b.  Strain:  deformation per unit length of dimension 
Normal strain (ε): stretches or compresses material 
Shear strain (γ): changes the angle between lines within the material 
 

c.  Average Shear Stress in Fasteners 

τ = 
V
A      Single Shear 

V = Shear force on pin  V = P 
A = Cross sectional area of pin 
     Double Shear 

     V = 
P
2  

 
d.  Bearing Stress in Fasteners 

 σ = 
P
dt  

P = force 
d = diameter of fastener 
t = thickness of part 
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Section 2:  Axial Loading 
 
a.  Axial relationships 

If the line of action of the load, P, passes through the centroid of the resisting 
cross-section: 
 
 
 
 
 
 
If the material is also linear, then: 
 
 
 
 Where E is the modulus of elasticity for the 

material. 
 
The relationship between axial loading and 
deformation becomes: 
 
 
 
 

b.  Statically Determinate Members 
Static Equilibrium 
  ΣF = 0 = -F1 + F2 – F3 + F4 
  

Internal Forces 
PAB = F1 (Tension) 
PBC = F1 – F2 (Tension) 
PCD = F1 – F2 + F3 (Tension) 

 
Deformation 

 δAD = δAB + δBC + δCD = 
PABLAB
AABEAB

  +  
PBCLBC
ABCEBC

 + 
PCDLCD
ACDECD

  

Since the P’s were assumed in tension, negative values will indicate 
compression and contraction for the deformation rather than elongation. 

 
Thermal Deformation 

Thermal deformation may be added to any mechanical deformation caused 
by internal forces acting on the material to obtain a total deformation. 

 

A
Pstressaxial == σ

L
strainaxial δε ==

E
LawsHookeUniaxial σε =:'

EA
LPndeformatioaxial =δ:

TLABAB
thermal
AB ∆= αδ
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c.  Statically Indeterminate Members 
 

1.  After the rigid bearing plate 
contacts the lower section: 

 
Equilibrium: 
  ΣFy = 0 = FA + FB – P 
 FA + FB = P 
 
  ∆ = displacement of bearing plate 
 
  Section A: 
 ∆A = δforce + δthermal 

   = 
PALA
AAEA

  + αALA∆T 

 
  Section B:  (assumes that the bearing plate contacts B) 

 ∆B = δforce - δthermal + gap = 
PBLB
ABEB

  - αBLB∆T + gap 

  Deformation relationship 

 
PALA
AAEA

  + αALA∆T =  
PBLB
ABEB

 - αBLB∆T + gap 

 
2.  After horizontal bar contacts post: 
 

Equilibrium: 
  ΣM = 0 = (a)PA + ((b)PB – (b+c)P 
 

  Displacement relationship:  
∆A
a  =  

∆B
b   

  Link A: 
∆A = δforce + δthermal 

= 
PALA
AAEA

  + αALA∆T 

  Post B:  (assumes bar contacts B) 
∆B = δforce - δthermal + gap 

 = 
PBLB
ABEB

  - αBLB∆T + gap 

 
  Deformation relationship 

Link A is assumed in 
tension and post B in 
compression. 
 
 b

gapTL
EA
LP

a

TL
EA
LP

AA
BB

BB
AA

AA

AA +∆−
=

∆+ αα
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Section 3: Torsion of Circular Sections
 
a. Shear stress 

If the shaft has a circular cross section and the material 
remains in the linear-elastic region, the shear stress in the 
shaft varies as a linear function of the distance (∆) from 
the center of the shaft and is given by: 
 
 

 
 

The maximum shear stress in the shaft is on the outer 
surface independent of whether the shaft is solid or 
hollow and is given by: 
 
 
 
 
The polar area moment of inertia is: 
 
 
 
 
 
 
The calculated stresses act on the element as 
shown. 
 
The deformation is measured by the angle of twist (θ) of one end relative to the 
other and is giver by: 
 
 
 
 
 where G is the modulus of rigidity for the material and L is the length of shaft. 
 
The shaft also has maximum and minimum normal 
stresses acting on a element rotated 45° from the 
element for which the shear stress was calculated.  
The maximum tensile and compressive stresses are 
related to the shear stress by: 
 
 
 
 

J
Tstressshear ρτ =:

J
rTstressshear o=max:max τ
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Section 4: Beams 
 
a.  Flexural or Bending Stress 

If the loads on a beam act in its plane 
of symmetry and the beam is linear 
elastic, the bending stresses acting 
normal to the cross section vary 
linearly with the distance from the 
neutral axis (N.A.) and are given by: 

In the absence of axial loads: 

In the sketch the cross-section is shown rectangular.  However, the cross section, 
in general, can be circular, triangular, etc.  The properties of many structural 
sections such as T-, I-, H-sections can be found in handbooks.  If the section is not 
standard, you must be prepared to determine the centrodial location as well as the 
value of INA.  The maximum bending stress occurs at the location in the beam 
where (My) is maximum. 
The section modulus provides a single parameter for design purposes. 

 
 
 

where c is the maximum distance of material from the neutral axis. 
 

b.  Shearing Stresses in Beams 
 

The transverse and longitudinal 
horizontal shearing stress in a 
beam is given by: 

where Q is the first moment of the 
shaded area about the neutral axis if the shearing stress is being evaluated along 

the inside edge of the shaded area.  For a rectangular section Q = (c – a)(t)
(c + a)

2  . 

The maximum shearing stress will occur where 
Q
t   is maximum.  Q is always 

maximum at the neutral surface.  However,  
Q
t  may or may not be maximum at 

the neutral surface.  Check all possibilities. 

NAI
Mystressesbending =σ:

axiscentrodialaxisneutral =

S
Mstressbendingimum max

maxmax =σ
c
IulustionS == modsec

tI
VQ

NA

=τ
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The shear flow or force per unit length of beam acting on the joint between 
sections making up a built-up cross-section is given by: 

where the area on either side of the joint is used to calculate Q. 
Shear flow and discrete fastener strength are related by:  FV = fs, where FV is the 
net shearing strength of the joint fasteners on a single cross-section of the beam 
and s is the distance along the beam between cross-sections containing fasteners.

c.  Combined Stresses in Beams. 

In general any cross-section of the 
beam will have both shear and bending 
acting on it.  This results in a general 
stress element as shown, 

where σbending = 
My

I  ; and τshear =  
VQ
It . 

 
Failure is most likely to occur on a cross-section where V or M are maximum.  
On the cross-section failure due to pure bending may occur at the top or bottom of 
the cross-section, and due to pure shear may occur at the neutral axis.  Wide-
flange or other non-uniform cross-sections may have principal stresses or 
maximum shearing stresses at the web-flange intersection or other points of 
change in cross section width that exceed other stresses on the cross-section. 

d.  Supporting Beam Topics. 

Maximum shear and bending moment values are found most easily and reliably 
using the Shear and Bending Moment Diagrams developed in Statics. 
 
The centroidal location can be determined by first moments about any axis 
parallel to the bending moment axis. 

where A is the entire area of the cross-section and the Ai are the 
areas of subfigures making up the cross-section.  ȳ  and the yi's 
are the perpendicular distance from the reference axis to the 
centroid of the associated area. 
 

If the cross-section can be divided into common shaped areas for which the 
location of the centroid and the area moment of inertia (Ii) about the centroid are 
known then the area moment of inertia (INA) for the cross-section can be 
determined from: 

where the Ii are the area moments of inertia of the 
individual areas about their own centrodial axis and d is 
the perpendicular distance between the area centrodial 
axis and the neutral axis of the cross-section. 
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e.  Beam Deflections 
 

Two Integration Method
The deflection of straight beams is determined from the equation: 

Here y(x) is the lateral displacement of the beam from its original position as 
a function of position along the beam, the primes denote derivatives with 
respect to x, and M(x) is the bending moment as a function of position along 
the beam.  Integration of this equation once yields the equation of the slope 
as a function of position along the beam: 

A second integration yields the deflection or elastic curve equation: 

The two integration constants C1 and C2 are evaluated using the boundary 
conditions imposed on the slope and deflection by the supports. 
 
The majority of beam loading requires that the bending moment be defined 
using more than one analytic function.  Each function is valid over its own 
portion of the beam length and results in its own set of slope and deflection 
equations that are valid in that portion of the beam.  Each set of equations has 
its own pair of integration constants.  The additional boundary conditions 
come from requiring that the slope and deflection given by the equations on 
both sides of a boundary between changes in bending moment functions give 
the same value when evaluated at the boundary. 

 
Superposition Method 

The solutions for these equations for many different types of supports and 
loads are given in many of the common engineering handbooks.  The 
principal of superposition allows the solutions of different loads to be added 
together to give the solution for the combined loads.  The limitations of this 
method depend on how extensive the available beam tables are.  It must be 
kept in mind that the table entry must be able to exactly match the portion of 
the load being represented using only a scaling factor and/or mirror imaging.  
Loads in the tables may have either positive or negative values. 
 

( ) ( )xMxyEI =′′

( ) ( ) 1CdxxMxyEI +=′ ∫

( ) ( )[ ] 21 CxCdxdxxMxEIy ++= ∫ ∫

( ) ( )
( ) ( )boundaryatyboundaryaty

boundaryatyboundaryaty

RL

RL

=

′=′
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Section 5:  Thin-Walled Pressure Vessels 
 

Thin-walled pressure vessels are defined as having the ratio t/r ≤ 0.1, where t is the 
wall thickness and r is the internal radius of either the sphere or cylinder.  The 
pressure, p, is the gage pressure and the analysis is only safe for positive internal 
pressures.  The analysis assumes that the in-plane stresses are uniform across the 
thickness of the wall.  The radial stress is zero on the exterior surface and equal to –p 
on the interior surface. 
 
a.  Sphere 

σ = 
pr
2t ;  (at any point and in any direction) 

σ1 = σ2 = 
pr
2t  

 
On the inside surface 

 
σ3 = -p 
 
 

On the outside surface 
For any x-y coordinate system in the plane of the 
surface 

 
Cylinder 

a = axial; h = hoop directions 

σ1 = σh = 
pr
t    σ2 = σa =   

pr
2t

On the inside surface 
 
σ3 = -p 
 
 

On the outside surface 
For any x-y coordinate system in the plane of the 
surface, usually the axial and hoop directions. 

 
 

2
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Section 6:  Column Buckling 
 

Columns are long slender members under compressive axial loading.  Column 
buckling is a stability problem, which means failure can occur without the material 
reaching the yield or ultimate stress.  Columns are divided into three classes; slender, 
intermediate, and short based on both material and slenderness ratio (L'/r). 
 
The critical buckling load or stress for 
slender columns (L'/r > 100 for steel) are 
given by Euler's Buckling Equation: 
L' is the effective length of the column and 
depends on the type of supports at the ends.  The four common support combinations 
are: 
L is the actual length of the column and r is the radius of gyration for the cross 
section r = (I/A)1/2 
 
The critical load for intermediate columns can be 
found in various code handbooks.  These also give 
the range of slenderness ratios for which they are 
valid. 
 
Short columns are treated using the ordinary axial 
loading theory. 
 

Section 7:  Plane Transformations 
 

a.  Stresses 
 

Transformation Equations 
It is assumed that all the stresses in one direction are zero.  The coordinate 
axes are orientated to place the z-axis in that direction.  This situation is 
common in engineering applications.  A free surface is the classic example. 
 
The stresses representing the state of stress at a point are different when 
measured with respect to two different coordinate systems that are rotated 
with respect to each other.  If the first system is labeled xy then the x'y' is 
rotated counter-clockwise by an angle θ. 
 
The primed stresses may be determined from the unprimed by the equations: 

σy' = σx'(θ + 90°) 
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Principal Stress and Maximum Shearing Stress 
There will always be a maximum and minimum stress value, referred to as 
the principal stresses, occurring at some orientation.  There will also be a 
maximum shearing stress that occurs on two different planes. 
 
The values of the principal stresses are given by: 

The plus sign is used for the larger σ1 and the minus sign for the smaller σ2. 
 
The value of the maximum shearing stress is given by: 

The orientation of the σ1 plane relative to the σx plane is given by: 

θP is the counter-clockwise angle from the σx plane to the σ1 plane. 
 
The two principal planes at perpendicular to each other and the two 
maximum shearing stress planes are at 45° to either of the principal planes. 
 

Mohr's Circle for Plane Stress 
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Mohr's Circle is a mapping of the normal and shear stress acting on a plane at 
a point in real space to the coordinates of a point in the σ-τ plane.  All the 
points associated with the stresses on planes at a single point lie on a circle 

centered at σavg = 
σx + σy

2   and τ = 0.  The radius of the circle is equal to the 

maximum in-plane shearing stress. 

Mohr's Circle can best be used as a road map relating various planes and their 
stresses at the point.  Rotation in real space from one plane to another results 
in a corresponding movement around the circle in the same direction, but 
twice as far.  The coordinates of the new point represent the stresses acting 
on the new plane.  The two points at which the circle crosses the horizontal 
axis represent the two principal stress planes and the points at the top and 
bottom of the circle the two maximum in-plane shearing stress planes.  The 
principal stress are then given by σ1,2 = σavg ± R, where R = τP. 
 
Sign convention for the normal stress is the usual positive to the right and 
negative to the left.  Shear stresses are best treated by considering which way 
the shear stress on a given plane is trying to twist the element, clockwise 
twist is plotted in the upper half of the σ-τ plane and counter-clockwise in the 
lower half of the ε-ϑ plane.  The sign information works both ways since 
there is a unique one-to-one mapping. 
 

b. Strains 
 

Transformation Equations 
The analysis is based on a plane strain state in which all strains in the z-
direction are zero.  The analysis can also be used for a plane stress state with 
one minor modification.  A material can not have both plane stress and plane 
strain states at the same time. 
 
The relationship between the strains at a point measured relative to a set of 
axes x-y and a set x'-y' which have the same origin but are rotated counter-
clockwise from the original axes by an angle θ are given by 

for the normal strains and by 

for the shearing strain.  Note the similarity of form between these equations 
and the stress transformation equations. 
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Principal Strains and Maximum Shearing Strain 
As with the stresses there are maximum and minimum (principal) values of 
the normal strains for particular orientations at the point and maximum 
shearing strains.  The principal strains are given by 

and the maximum shearing strain is given by 

The orientation of the larger principal strain to the positive x-direction is 
given by 

The direction of the smaller principal strain is perpendicular to the first.  The 
directions involved with the maximum shearing strain are the two directions 
at 45° to both of the principal directions. 
 

Mohr's Circle for Strain 
A Mohr's Circle mapping between the strains acting with respect to a set of 
x-y axes at a point and a point in the strain plane can be made.  The same 

rules apply as for the stress circle with ε replacing σ and 
γ
2  replacing τ.  This 

makes the radius of the circle equal to half the in-plane maximum shearing 
strain. 
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Sign convention for the shear strain is based on which way that axis has to 
twist to have the right angle close for a positive shear strain and open for a 
negative shear strain. 

The circle is centered at εavg = 
εx + εy

2   and  
γ
2  = 0, with a radius R = 

γmax
2  . 

As with the stresses, the principal strains are located where the circle crosses 
the horizontal axis.  Maximum shearing strains are located at the top and 
bottom of the circle. 
 

Strain Rosettes 
 

Determination of the strain state on 
a surface which is assumed to be in 
a state of plane stress involves 
measuring three independent strain 
gages and solving the set of three 
equations for the unknowns: εx, εy, 
and γxy. 

ccxycycxc

bbxybybxb

aaxyayaxa

SinCosSinCos

SinCosSinCos

SinCosSinCos

θθγ+θε+θε=ε

θθγ+θε+θε=ε

θθγ+θε+θε=ε

22

22

22



14 

07/26/13 

 
Two common rosette configurations simplify the equation set considerably. 

 
Section 8:  Material Properties 
 

a.  Poisson's Ratio 
 

When a material is stretched in one direction it contracts in the lateral directions.  
The resulting longitudinal and lateral strains occur in a fixed ratio known as 
Poisson's ratio.  The value of Poisson's ratio for a given material may be 

determined from a simple tension test as ν = - 
εlateral

 εlongitudinal
 .  The minus sign 

recognizes that the two strains always have opposite signs.  This simple 
definition can be used to calculate the value of Poisson’s ratio only for a uniaxial 
stress state with the material still in the linear region where σ = Eε.  In 
multidimensional stress states both strains are effected by stress induced strains 
in the other direction. 
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b.  Generalized Hooke's Law 
 

Three dimensional stress state. 

These relationships are valid within the linear region of the materials stress-strain 
response. 
 
G is the modulus of rigidity (shearing modulus of elasticity)  

G, E, and ν are related by the formula:  G = 
E

2(1 + ν)  

 
Plane stress state:  σz = τxz = τyz = 0 
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REVIEW PROBLEMS 
 
1. An aluminum bar having a constant cross sectional area of 0.25 in2 carries the axial 

loads applied at the positions shown.  Find the deformation of the bar. 
 

a. ____ 0.0192 in. 

b. ____ 0.2880 in. 

c. ____ 0.3264 in. 

d. ____ 0.3840 in. 

e. ____ None of these. 

 
 
 

2. A steel rod with a cross sectional area of 0.5 in2 is stretched between two rigid walls.  
The temperature coefficient of strain is 6.5×10-6 in./in./°Ε and E is 30×106 psi.  If the 
tensile load is 2000 lb. at 80°F, find the tensile load at 0°F. 

 
 a. ____ 5800 lb. 

 b. ____ 7800 lb. 

 c. ____ 8800 lb. 

 d. ____ 9800 lb. 

 e. ____ 19,600 lb. 

 
 
 
 
3. The composite bar shown is firmly attached to unyielding supports at the ends and is 

subjected to the axial load P shown.  If the aluminum is stressed to 10,000 psi, find the 
stress in the steel. 

 
 a. ____ 1000 psi 

 b. ____ 2000 psi 

 c. ____ 5000 psi 

 d. ____ 10,000 psi 

 e. ____ 20,000 psi 
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4. Find the length L necessary to make the total angle of twist between the ends of the 
shaft equal zero. 

 
a. ____ 3 ft. 

b. ____ 4 ft. 

c. ____ 6 ft. 

d. ____ 9 ft. 

e. ____ 12 ft. 

 

 

 

 

5. Determine the shearing stress at points A 
and B which are at the inside and outside 
surfaces of the hollow shaft.  Assume 
elastic behavior. 

 
 
 
 
 
 
 
 
 
 
 
 
6. A hollow aluminum shaft and a solid steel 

shaft are rigidly connected at each end.  
This compound shaft is then loaded as 
shown.  Determine the maximum shearing 
stress in each material and the angle of 
twist of the free end.  Assume elastic 
behavior. 

 Galuminum = 4×106 psi 
 Gsteel = 12×106 psi 
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7. Determine the maximum bending moment in the beam. 
 

a. ____ 3600 ft-lb. 

b. ____ 5400 ft-lb. 

c. ____ 7200 ft-lb. 

d. ____ 8100 ft-lb. 

e. ____ 4050 ft-lb. 

 
8. Find the maximum transverse shearing force in the beam shown. 
 

a. ____ 450 lb. 

 b. ____ 1800 lb. 

 c. ____ 2250 lb. 

 d. ____ 3600 lb. 

 e. ____ 4050 lb. 

 

9. By means of strain gages, the flexural stresses are found to be –12,000 psi at A and 
+4000 psi at B.  Assuming the elastic limit of the material has not been exceeded; 
find the flexural stress at the bottom of the beam. 

 
 a. ____ 6000 psi. 

 b. ____ 8000 psi. 

 c. ____ 9000 psi. 

 d. ____ 10,000 psi. 

 e. ____ 12,000 psi. 

 
 
10. For the cast iron beam shown, the maximum permissible compressive stress is 

12,000 psi and the maximum permissible tensile stress is 5000 psi.  Find the 
maximum safe load P that can be applied to the beam as shown. 

 
a. ____ 220 lb. 

 b. ____ 333 lb. 

 c. ____ 1250 lb. 

 d. ____ 3000 lb. 

 e. ____ 7500 lb. 
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11. A 12-inch, 35-lb I-beam 30 ft. long is supported at 5 ft. from each end and carries a 
uniform distributed load of 1600 lbs per ft. (which includes its own weight).  
Determine the maximum flexural stress in the beam. 

 
 
 
 
12. Find the maximum vertical shearing force which may be applied to a box beam 

having the cross section shown without exceeding a horizontal shearing stress of 
500 psi. 

 
a. ____ 3065 lb. 

 b. ____ 4000 lb. 

 c. ____ 6000 lb. 

 d. ____ 6130 lb. 

 e. ____ 6300 lb. 
 
 
13. Find the reaction at the right end of the beam shown. 
 
 a. ____ wL/8 

 b. ____ wL/4 

 c. ____ 3wL/8 

 

 
14. Two beams, simply supported at their ends, jointly support a load P = 3500 lb. 

applied to the upper 6-ft. beam at its midpoint.  The beams are identical except for 
length and cross at their midpoints.  find the load carried by the lower 9-ft. beam. 

 
a. ____ 700 lb. 

 b. ____ 800 lb. 

 c. ____ 1000 lb. 

 d. ____ 1750 lb. 

 e. ____ 2700 lb. 
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15. Determine the deflection at the end 
of this beam. 

 
 
 
 
 
 
 
16. The critical Euler load for the pin-ended slender 

column restrained at the midpoint as shown in 
Fig. A is 1000 lb.  What is the critical Euler load 
for the same column with the midpoint restraint 
removed as shown in Fig. B. 

 
a. ____ 250 lb. 

 b. ____ 500 lb. 

 c. ____ 750 lb. 

 d. ____ 1000 lb. 

 e. ____ 4000 lb. 
 
 
 
 
17. A rectangular bar is loaded as shown.  Find the maximum tensile stress developed 

over section A-A. 
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18. For stress conditions on the element shown, find the 
principal stresses and the plane on which the 
maximum principal stress acts. 

 
 
 
 
 
 
 
 
 
19. A circular shaft of brittle material subjected to torsion fractures along a 45° angle.  

Failure is due to what kind of stress? 
 
 a. ____ Shearing stress. 

 b. ____ Compressive stress. 

 c. ____ Tensile stress. 

 d. ____ Combined stress. 

 e. ____ None of these. 

 

20. Which has the higher shear stress for a given elastic torque? 
 
 a.  a one-inch diameter rod, or b.  a two-inch diameter rod. 
 
21. Identical rods of aluminum and steel are each subjected to the same elastic torque.  

Which rod will have the higher shear stress? 
 
 a.  steel  b.  aluminum  c.  both have the same stress 
 
22. If G represents the modulus of rigidity (or shear modulus of elasticity), E is the 

modulus of elasticity, and ν is Poisson’s ratio, which of the following statements is 
true for any homogeneous material? 

 
 a. ____ G is independent of E. 

 b. ____ G is 0.4E. 

 c. ____ G is 0.5E 

 d. ____ G depends upon both E and ν. 

 e. ____ None of these. 
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ANSWERS EIT REVIEW 
MECHANICS OF MATERIALS 

 
1. c 

2. d 

3. e 

4. d 

5. τB = 5,333.3 psi τA = 2,666 psi 

6. τS = 81,528 psi τA = 54,352 psi θ = 1.086 rad 

7. e 

8. c 

9. b 

10. d 

11. σmax = 19,100 psi 

12. d 

13. c 

14. b 

15. 19.8 in. 

16. a 

17. 8,000 psi 

18. σmax = 605 psi  σnmin = -6606 psi 

19. c 

20. a 

21. c 

22. d 


