
2

V. Ethics and Business Practices 7%

VI. Engineering Economics  8%

VII. Engineering Mechanics (Statics and Dynamics) 10%

VIII. Strength of Materials 7%
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33MECHANICS OF MATERIALS

UNIAXIAL STRESS-STRAIN

Stress-Strain Curve for Mild Steel

�	

The slope of the linear portion of the curve equals the  
modulus of elasticity.

DEFINITIONS

Engineering Strain

ε = ΔL/Lo, where

ε = engineering strain (units per unit),

ΔL = change in length (units) of member,

Lo = original length (units) of member.

Percent Elongation

% Elongation = L
L 100
o

#Dc m

Percent Reduction in Area (RA)

The % reduction in area from initial area, Ai�������	��	�	��
Af , is:

%RA = A
A A

100
i

i f
#

-e o  
Shear Stress-Strain

γ = τ/G, where

γ = shear strain,

τ = shear stress, and

G = shear modulus (constant in linear torsion-rotation 
relationship).

,G
v

E
2 1

where=
+^ h

E = modulus of elasticity (Young’s modulus)
v = Poisson’s ratio, and
 = – (lateral strain)/(longitudinal strain).

ST
RE

SS
, P

SI

ST
RE

SS
, M

Pa

MECHANICS OF MATERIALS

Uniaxial Loading and Deformation

σ = P/A, where
σ = stress on the cross section,

P = loading, and

A = cross-sectional area.

ε = δ/L, where
δ = elastic longitudinal deformation and

L = length of member.

E L
P A

AE
PL

= =

=

v f
d

d

True stress is load divided by actual cross-sectional area 
whereas engineering stress is load divided by the initial area.

THERMAL DEFORMATIONS

δt = αL(T – To), where

δt = deformation caused by a change in temperature,

α = �����	���������������������	�
����

L = length of member,

T �� ��	�������	�����	��

To = initial temperature.

CYLINDRICAL PRESSURE VESSEL

Cylindrical Pressure Vessel

For internal pressure only, the stresses at the inside wall are:

P
r r
r r Pandt i
o i

o i
r i2 2

2 2

=
-

+
=-v v

For external pressure only, the stresses at the outside wall are:

,P
r r
r r Pand wheret o
o i

o i
r o2 2

2 2

=-
-

+
=-v v

σt = tangential (hoop) stress,

σr = radial stress,

Pi = internal pressure,

Po = external pressure,

ri = inside radius, and

ro = outside radius.

For vessels with end caps, the axial stress is:

P
r r

r
a i

o i

i
2 2

2

=
-

v

σt, σr, and σa are principal stresses.

♦ Flinn, Richard A. & Paul K. Trojan, Engineering Materials & Their Applications, 
������������������������������$�
�����_����
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34 MECHANICS OF MATERIALS

When the thickness of the cylinder wall is about one-tenth or 
less of inside radius, the cylinder can be considered as thin-
walled. In which case, the internal pressure is resisted by the 
hoop stress and the axial stress.

t
P r

t
P r
2andt

i
a

i= =v v

where t = wall thickness.

STRESS AND STRAIN

Principal Stresses

For the special case of a two-dimensional stress state, the 
equations for principal stress reduce to

, 2 2

0

a b
x y x y

xy

c

2
2!=

+ -
+

=

v v
v v v v

x

v

d n

The two nonzero values calculated from this equation are 
temporarily labeled σa and σb and the third value σc is always 
zero in this case. Depending on their values, the three roots are 
then labeled according to the convention:
algebraically largest = σ1, algebraically smallest = σ3, 
other = σ2. A typical 2D stress element is shown below with 
all indicated components shown in their positive sense.

♦

Mohr’s Circle – Stress, 2D

To construct a Mohr’s circle, the following sign conventions 
are used.
1. Tensile normal stress components are plotted on the 

horizontal axis and are considered positive. Compressive 
normal stress components are negative.

2. For constructing Mohr’s circle only, shearing stresses 
are plotted above the normal stress axis when the pair of 
shearing stresses, acting on opposite and parallel faces of 
an element, forms a clockwise couple. Shearing stresses 
are plotted below the normal axis when the shear stresses 
form a counterclockwise couple.

The circle drawn with the center on the normal stress 
(horizontal) axis with center, C, and radius, R, where

,C R2 2
x y x y

xy

2
2

=
+

=
-

+
v v v v

xd n

The two nonzero principal stresses are then:
♦ 
 
 σa = C + R
 σb = C – R

The maximum inplane shear stress is τin = R. However, the 
maximum shear stress considering three dimensions is always 

.2max
1 3=
-

x
v v

Hooke's Law

Three-dimensional case:
εx = (1/E)[σx – v(σy+ σz)]  γxy = τxy /G

εy = (1/E)[σy – v(σz+ σx)]  γyz = τyz /G

εz = (1/E)[σz – v(σx+ σy)]  γzx = τzx /G

Plane stress case (σz = 0): 
εx = (1/E)(σx – vσy) 

εy = (1/E)(σy – vσx)

εz = – (1/E)(vσx + vσy)

Uniaxial case (σy = σz = 0):  σx = Eεx or σ = Eε, where
εx, εy, εz = normal strain,

σx, σy, σz = normal stress,

γxy, γyz, γzx = shear strain,

τxy, τyz, τzx = shear stress,

E = modulus of elasticity,

G = shear modulus, and

v = Poisson’s ratio.

♦ Crandall, S.H. and N.C. Dahl, An Introduction to Mechanics of Solids, McGraw-Hill, New York, 1959.

,

in

,

R

cw

ccw

b

y xy

R

C 2

a

xyx

v
E v

v

v1

1

0
1
0

0
0

2
1

x

y

xy

x

y

xy

2=
- -

v

v

x

f

f

c

R

T

S
S
S
S

V

X

W
W
W
W
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35MECHANICS OF MATERIALS

STATIC LOADING FAILURE THEORIES

See MATERIALS SCIENCE/STRUCTURE OF 

MATTER for Stress Concentration in Brittle Materials.

Brittle Materials

Maximum-Normal-Stress Theory

The maximum-normal-stress theory states that failure occurs 
when one of the three principal stresses equals the strength 
of the material. If σ1 ≥ σ2 ≥ σ3, then the theory predicts that 
failure occurs whenever σ1 ≥ Sut or σ3 ≤ – Suc where Sut and 
Suc are the tensile and compressive strengths, respectively.

Coulomb-Mohr Theory

The Coulomb-Mohr theory is based upon the results of tensile 
	��������

������
�
���������&����������	���
�
���������
circle is plotted for Sut and one for Suc. �
�
������������������
lines are then drawn tangent to these circles. The Coulomb-
Mohr theory then states that fracture will occur for any stress 
situation that produces a circle that is either tangent to or 
��

�
��������������������������������
��	�������������Sut and 
Suc circles.

σ

τ

Sutσ1σ3-Suc

If σ1 ≥ σ2 ≥ σ3  and σ3 < 0, then the theory predicts that 
yielding will occur whenever

S S 1
ut uc

1 3 $-
v v

Ductile Materials

Maximum-Shear-Stress Theory

The maximum-shear-stress theory states that yielding begins 
when the maximum shear stress equals the maximum shear 
stress in a tension-test specimen of the same material when 
that specimen begins to yield. If σ1 ≥ σ2 ≥ σ3, then the theory 
predicts that yielding will occur whenever τmax ≥ Sy /2 where 
Sy is the yield strength.

.2max
1 3=
-

x
v v

Distortion-Energy Theory

The distortion-energy theory states that yielding begins 
whenever the distortion energy in a unit volume equals the 
distortion energy in the same volume when uniaxially stressed 
to the yield strength. The theory predicts that yielding will 
occur whenever

S2 y
1 2

2
2 3

2
1 3

2 1 2

$
- + - + -v v v v v v^ _ _h i i= G

The term on the left side of the inequality is known as the 
effective or Von Mises stress. For a biaxial stress state the 
effective stress becomes

3

or
A A B B

x x y y xy

2 2 1 2

2 2 2 1 2

= - +

= - + +

v v v v v

v v v v v x

l

l

`

`

j

j

where σA and σB are the two nonzero principal stresses and σx, 
σy, and τxy are the stresses in orthogonal directions.

VARIABLE LOADING FAILURE THEORIES

��������`����	��?������?�����������`����	����������
states that a fatigue failure will occur whenever

, ,S S S1 1 0or max

e

a

ut

m

y
m$ $ $+

v v v
v

where
Se = fatigue strength,

Sut = ultimate strength,

Sy = yield strength,

σa = alternating stress, and

σm = mean stress.

σmax = σm + σa

Soderberg Theory: The Soderberg theory states that a fatigue 
failure will occur whenever

S S 1 0
e

a

y

m
m$ $+

v v
v

Endurance Limit for Steels: When test data is unavailable, the 
endurance limit for steels may be estimated as

. , ,
> ,

S
S S

S
0 5 1 400

700 1 400
MPa

MPa, MPae
ut ut

ut

#
=l * 4
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Endurance Limit Modifying Factors: Endurance limit 
modifying factors are used to account for the differences 
between the endurance limit as determined from a rotating 
beam test, S el , and that which would result in the real part, Se.

S k k k k k Se a b c d e e= l

where

Surface Factor, ka = aSut
b

Factor aSurface

Finish kpsi MPa

Exponent

b
Ground 1.34 1.58 –0.085 
Machined or 
CD

2.70 4.51 –0.265 

Hot rolled 14.4 57.7 –0.718 
As forged 39.9 272.0 –0.995 

Size Factor, kb:
For bending and torsion:

d ≤ 8 mm; kb = 1

8 mm ≤ d ≤ 250 mm; kb = . d1 189 .
eff

0 097-

d > 250 mm;  0.6 ≤ kb ≤ 0.75

For axial loading:  kb = 1

Load Factor, kc:
kc = 0.923  axial loading, Sut  ≤ 1,520 MPa

kc = 1  axial loading, Sut  > 1,520 MPa

kc = 1  bending

kc = 0.577  torsion

Temperature Factor, kd:
for T ≤ 450°C, kd = 1

Miscellaneous Effects Factor, ke: Used to account for strength 
reduction effects such as corrosion, plating, and residual 
stresses. In the absence of known effects, use ke = 1.

TORSION

Torsion stress in circular solid or thick-walled (t > 0.1 r) 
shafts:

J
Tr

=x

where J = polar moment of inertia (see table at end of 
STATICS section).

TORSIONAL STRAIN

limit / /r z r d dz
0zz = =c z zD D

"
z

D
^ ^h h

The shear strain varies in direct proportion to the radius, from 
zero strain at the center to the greatest strain at the outside of 
the shaft. dφ/dz is the twist per unit length or the rate of twist.

/

/ /

,

G Gr d dz

T G d dz r dA GJ d dz

GJ
T dz GJ

TL where

z z

A

o
L

2

= =

= =

= =

x c z

z z

z

z z ^

^ ^

h

h h#

#

φ = total angle (radians) of twist,

T = torque, and

L = length of shaft.

T/φ gives the twisting moment per radian of twist. This is 
called the torsional stiffness and is often denoted by the 
symbol k or c.

For Hollow, Thin-Walled Shafts

,A t
T

2 where
m

=x

t = thickness of shaft wall and
Am = the total mean area enclosed by the shaft measured to  

 the midpoint of the wall.

BEAMS

Shearing Force and Bending Moment Sign Conventions

1. The bending moment is positive if it produces bending of 
the beam concave upward X�����

��������������
�	���
���
�����������������
!�

2. The shearing force is positive if the right portion of the 
beam tends to shear downward with respect to the left.

♦ 

♦ Timoshenko, S. and Gleason H. MacCullough, Elements of Strengths of Materials, K. Van Nostrand

 Co./Wadsworth Publishing Co., 1949.

POSITIVE BENDING NEGATIVE BENDING

NEGATIVE SHEARPOSITIVE SHEAR
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37MECHANICS OF MATERIALS

The relationship between the load (q), shear (V), and moment 
(M) equations are:

q x dx
dV x

V dx
dM x

V V q x dx

M M V x dx

x
x

x
x

2 1

2 1

1

2

1

2

=-

=

- = -

- =

^ ^

^

^

^

h h

h

h

h

7 A#

#

Stresses in Beams

εx = – y/ρ, where

ρ ������	���
�������	��������������������	��
��������� �
 beam, and

y = the distance from the neutral axis to the longitudinal  
� �������^��
�����

Using the stress-strain relationship σ = Eε,
Axial Stress: σx = –Ey/ρ, where

σx ���������	��
��

���������������	����y-distance from  
 the neutral axis.

  1/ρ = M/(EI), where

M = the moment at the section and

I = the moment of inertia of the cross section.

  σx = – My/I, where

y ��������
�	����������������	��	��
���������������	������
 above or below the axis. Let y = c, where c = distance  
� ������������	��	��
��������������
���������	�� �
 symmetrical beam section. 

  σx = ± Mc/I

Let S = I/c: then, σx = ± M/S, where

S = the elastic section modulus of the beam member.

?	�
��
��
��	������� q = VQ/I and

Transverse shear stress:  τxy = VQ/(Ib), where

q �� 
��	�����

τxy = shear stress on the surface,

V = shear force at the section,

b = width or thickness of the cross-section, and

Q = A yl l, where

A′ = area above the layer (or plane) upon which the   
 desired transverse shear stress acts and

yl = distance from neutral axis to area centroid.

���������	��	����

Using 1/ρ = M/(EI),

,

/

/

EI
dx
d y M

EI
dx
d y dM x dx V

EI
dx
d y dV x dx q

differential equation of deflection curve2

2

3

3

4

4

=

= =

= =-

^

^

h

h

�����������������������������^�	��������������������	�����
X	����������	�����������
�	�����	���������������������	�����
slope).

EI (dy/dx) = ∫M(x) dx

EIy = ∫[ ∫M(x) dx] dx
The constants of integration can be determined from the 
physical geometry of the beam.

COLUMNS

For long columns with pinned ends:
Euler’s Formula

,P EI wherecr 2

2

,
=
r

Pcr = critical axial loading,

,  = unbraced column length.

substitute I = r2A:

/
,A

P
r
E wherecr

2

2

,
=
r

^ h

r = radius of gyration and

/r,  = slenderness ratio for the column.

For further column design theory, see the CIVIL 

ENGINEERING and MECHANICAL ENGINEERING 

sections.
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ELASTIC STRAIN ENERGY

�������
�	�����	��
��������������	
����������������������������������������X�����
���!����	����������������	�
�����������
potential energy and can be recovered.

���������	����	���
�P and the corresponding elongation of a tension member is δ, then the total energy U stored is equal to the 
work W done during loading.

U = W = Pδ/2

The strain energy per unit volume is
u = U/AL = σ2/2E  (for tension)

MATERIAL PROPERTIES

Material

U
n

it
s

S
te

el

A
lu

m
in

u
m

C
a

st
 I

ro
n

 

W
o
o
d

 (
F

ir
) 

Mpsi 29.0 10.0 14.5 1.6 Modulus of 

Elasticity, E 
GPa 200.0 69.0 100.0 11.0 

Mpsi 11.5 3.8 6.0 0.6 Modulus of 

Rigidity, G GPa 80.0 26.0 41.4 4.1 

Poisson's Ratio, v  0.30 0.33 0.21 0.33

610 F− ° 6.5 13.1 6.7 1.7 Coefficient of 

Thermal

Expansion, α 610 C− ° 11.7 23.6 12.1 3.0 



39MECHANICS OF MATERIALS

B
ea

m
 D

ef
le

ct
io

n
 F

o
rm

u
la

s 
–
 S

p
ec

ia
l 

C
a
se

s 

(δ
 i

s 
p

o
si

ti
v
e 

d
o
w

n
w

a
rd

) 

(
)

(
) , f

or
 x

 ≤
 a

a
x

EIPx

, f
or

 x
 >

 a
a

x
EIPa

+
−

=
δ

−
=

δ

3
6

3
6

22

(
) a

L
EIPa

m
ax

−
=

δ
3

6

2

EIPa
m

ax
2

2

=
φ

(
)

Lx
L

x
EIx

w
4

6
24

2
2

2

−
+

=
δ

EIL
w

m
ax

8

4

=
δ

EIL
w

m
ax

6

3

=
φ

EIx
M 2

2

=
δ

EIL
M

m
ax

2

2

=
δ

EI
L

M
m

ax
=

φ

(
)

(
)

(
)

[
] , fo

r x
 ≤

 a
x

b
L

x
LE

I
Pb

a
x

,
x

b
L

x
a

x
bL

LE
I

Pb

−
+

−
=

δ

>
−

+
−

−
=

δ

6

fo
r

6

2
2

3

2
2

3
3

(
)

3
at

3
9

2
22

3
2

2

b
L

x

LE
I

b
L

Pb
m

ax

−
=−

=
δ

(
)

(
)

LE
I

b
L

Pa
bLE

I
a

L
Pa

b 6

2

6

2

21

−
=

φ

−
=

φ

(
)

3
2

3
2

24
x

Lx
L

EIx
w

+
−

=
δ

EI
m

ax
38

4

5
=

δ
EIL

w 24

3

2
1

=
φ

=
φ

2
1

2
R

R
=

=
 a

nd
 

2

12
1

2
M

M
=

=

4

38
4

2
m

ax
L

at
x

E
I

δ
=

=

3

0.
00

8
24

m
ax

EI
φ

= 2
12

l
L

at
x

=
±

y
a

P
b

x
L

φ m
ax

 

δ m
ax

δ m
ax φ m

ax
 

x
L

y

δ m
ax φ m

ax
 

x
M

L

y

P
a 

b 

L

y

R 1
 =

 P
b/

L 
R 2

 =
 P

a/
L x

y

R 1
 =

 w
 L

/2
 

R 2
 =

 w
 L

/2
 

x
L

M
2

δ m
ax

w
 (L

O
A

D
 P

E
R

 U
N

IT
 L

E
N

G
T

H
) 

M
1

R 1
R 2

φ m
ax

1

2

1
2

w
 L

w
 L

w
 (

L
O

A
D

 P
E

R
 U

N
IT

 L
E

N
G

T
H

) 

w
 (

L
O

A
D

 P
E

R
 U

N
IT

 L
E

N
G

T
H

) 

[
]

w
L4

w
L

w
L

L
(L

2  −
 2

Lx
 +

 x
2 )

24
EIx2

w
=

δ(
x)

C
ra

nd
al

l, 
S.

H
. a

nd
 N

.C
. D

ah
l, 

An
 In

tro
du

ct
io

n 
to

 M
ec

ha
ni

cs
 o

f S
ol

id
s, 

M
cG

ra
w

-H
ill

, N
ew

 Y
or

k,
 1

95
9.


	PREFACE
	About the Handbook
	Using the Handbook on exam day
	Updates on exam content and procedures
	Errata

	CONTENTS
	EXAM SPECIFICATIONS
	MORNING SESSION
	CHEMICAL
	CIVIL
	ELECTRICAL
	ENVIRONMENTAL
	INDUSTRIAL
	MECHANICAL
	OTHER DISCIPLINES

	UNITS
	CONVERSION FACTORS
	MATHEMATICS
	MECHANICS OF MATERIALS
	ENGINEERING PROBABILITY AND STATISTICS
	STATICS
	DYNAMICS
	FLUID MECHANICS
	THERMODYNAMICS
	HEAT TRANSFER
	TRANSPORT PHENOMENA
	BIOLOGY
	CHEMISTRY
	MATERIALS SCIENCE/STRUCTURE OF MATTER
	COMPUTER SPREADSHEETS
	MEASUREMENT AND CONTROLS
	ENGINEERING ECONOMICS
	ETHICS
	CHEMICAL ENGINEERING
	CIVIL ENGINEERING
	ENVIRONMENTAL ENGINEERING
	ELECTRICAL AND COMPUTER ENGINEERING
	INDUSTRIAL ENGINEERING
	MECHANICAL ENGINEERING
	INDEX



