| 18. For stress conditions on the element shown, find the principal stresses and the plane on which the
maximum principal stress acts. |
||
![]() |
||
tan(2qp) = 2txy / (sx-sy)
su = (sx+sy)/2 + (sx-sy)/2 cos(2q) + txysin(2q)
sv = (sx+sy)/2 - (sx-sy)/2 cos(2q) - txysin(2q)
tuv = -(sx-sy)/2 sin(2q) + txycos(2q)s1,2 = (sx+sy)/2 ± sqrt { [ (sx-sy)/2 ]2 + txy2 }
tmax = sqrt { [ (sx-sy)/2 ]2 + txy2 }
savg = (sx+sy)/2