BE50E Fall 2000 Exam 1

Name: \qquad

1. The antenna tower is supported by three cables. If the forces in these cables are $F_{\mathrm{B}}=520 \mathrm{~N}$, $F_{\mathrm{C}}=680 \mathrm{~N}$, and $F_{\mathrm{D}}=560 \mathrm{~N}$, determine the magnitude and coordinate direction angles (direction cosines) of the resultant force acting at A.

2. If the man at B exerts a force of $P=30 \mathrm{lb}$ on his rope, determine the magnitude of the force \boldsymbol{F} the man at C must exert to prevent the pole from tipping, i.e. so the resultant moment about A of both forces is zero.

3. A $20-\mathrm{N}$ horizontal force is applied perpendicular to the handle of the socket wrench. Determine the moment vector created by this force about point O.

4. Replace the loading by an equivalent resultant force and specify its location on the beam, measured from point O.

