1. A light bar $A D$ is suspended from a cable BE and supports a 600 lb load at the mid-point C. The ends A and D of the bar are in contact with smooth vertical walls. Neglecting the weight of the bar, determine the tension in cable BE and the reactions at A and D
Ans: $\begin{aligned} B E & =600 L 6 \uparrow \\ D & =100 L 6 \rightarrow \\ A & =1002 b \rightarrow\end{aligned}$
2. The right-angle boom OAB supports the 100 kg box. The boom is supported by three cables and a ball-and-socket joint at O. The cables are connected to points C, D, and E, which are all in the vertical y-z plane. The boom, which has negligible weight, is in the $x-y$ plane. The point coordinates are given in units of meters.
(a) Draw a free-body diagram for the boom by modifying the figure
(b) Find a unit vector along cable $B D$.
(c) Find the tension in cable $B D$, $T_{B D}$.
(d) Find the tension in cable $A C$, $T_{A C}$.

ANS:

$$
\begin{aligned}
& C G=2.083 \mathrm{kN}(\mathrm{C}) \\
& G F=11.25 \mathrm{kN}(\mathrm{R})
\end{aligned}
$$

4. The structure is supported by a pin at A and a roller at F. Find the horizontal and vertical components of pin forces on member $A B C$. Show your answers on a sketch of member ABC .

Ans: $A_{x}=0$
$A_{y}=25 \mathrm{Lb} \uparrow$
$B E=12.5 \mathrm{Lb} \rightarrow$
$c_{x}=12.5 \mathrm{Lb}$
$C_{y}=25 \mathrm{Lbb}$
all on $A C$

$$
\begin{gathered}
\text { Partial Ans: } \\
M_{5}=-3000 \text { kN.m } \\
M_{10}=3475 \mathrm{kN} \cdot \mathrm{~m} \\
M_{15}=-2500 \mathrm{kN} \cdot \mathrm{~m}
\end{gathered}
$$

5. Draw the complete shear force and bending moment diagrams for the beam loaded as shown. All loading and non-zero reactions are shown. Label all pertinent points on each diagram and give the order of curves

6. Determine the maximum force P for which the system will remain in equilibrium. Block A weighs 100 lb and the coefficient of static friction is 0.25 between the block and plane and between the belt and fixed peg.

7. Determine the x -coordinate to the centroid of the shaded area. All lengths are in inches.

$$
\begin{aligned}
& \text { Ans: } \\
& \bar{x}=5.007^{\prime \prime}
\end{aligned}
$$

8. Determine the moment of inertia of the shaded area with respect to the x -axis.

Ans:

$$
I_{x}=396.3 \mathrm{in}^{4}
$$

