1. Three cables are used to tether a balloon as shown. Knowing that the balloon exerts an 800 N vertical force at A , determine the tension in each cable.

ANs: $T_{A B}=200.9 \mathrm{~N} ; T_{A C}=371.7 \mathrm{~N} ; T_{A D}=415.5 \mathrm{~N}$
2. A beam is loaded with a combination of distributed and point loads as shown. Replace the system of loads with a single equivalent force and specify its location along the x -axis measured from point O .

ANS: $\bar{R}=173.2 \hat{\imath}-150 \hat{\jmath} N ; x=0.333 \mathrm{~m}$
3. Determine the horizontal and vertical components of the reactions at A and B for the simple frame loaded as shown. You may use the given sketch to create a free body diagram of the overall frame.
ANS: $\begin{array}{ll}A_{x}=100 N \leftrightarrows ; & b_{x}=400 N \rightarrow\end{array}$

$$
\text { ANS: } \begin{aligned}
M_{x} & =50 \mathrm{~N} ; B_{y}=450 \mathrm{~N}
\end{aligned}
$$

Ans:
$E G=48 \mathrm{kipx}(C)$
$F G=90 \mathrm{kjp}(T)$
5. Draw the complete shear force and bending moment diagrams for the beam loaded as shown

Please provide values for all pertinent points on each diagram. Write the equations for V and M as functions of x for $12 \mathrm{~m}<\mathrm{x}<2+\mathrm{m}$

Ans: $V=1300-25(x-12)^{2}$

$$
M=1300 x-16800-\frac{25}{3}(x-12)^{2}
$$

1000 kN
$M_{\text {max }}^{+}=5049.6 \mathrm{kN} . \mathrm{m}^{+}$ (2) $x=19.21 \mathrm{~m}$
6. The crate shown has a weight of 200 lb and a center of gravity at G. Determine the minimum force P required to cause impending motion of the crate. The coefficient of static friction is 0.4 between the crate and plane and 0.25 between the rope and fixed peg.

$$
\text { Ans: } P=103.9 \mathrm{Lb}
$$

7. The homogenous gate weighs 100 lb and its width (the dimension into the page) is 3 ft . Determine the reactions at A and B. Let the specific weight of the water be $62.4 \mathrm{lb} / \mathrm{ft}^{3}$.

Ans: $F_{B}=135.9 \mathrm{Lb}$
$A_{x}=256.7 \mathrm{Lb} \rightarrow$
$A_{y}=248,22 \mathrm{~b} 4$
8. Determine the area moment of inertia about the y-axis for the shaded composite area. You may wish to use the formulas below

ANS: $I_{y}=75.3\left(10^{6}\right) \mathrm{mm}^{4}$

