PROBLEM 1 Replace the force and couple-moment system by an equivalent resultant force and couple moment at flange $O$. Express the results in Cartesian vector form.


$$
\begin{aligned}
& \bar{F}_{R}=20 \hat{\imath}+80 \hat{\jmath}-10 \hat{k} \quad l b \\
& \bar{M}_{0}=80 \hat{\imath}+30 \hat{\jmath}+50 \hat{k} \quad f \cdot l b
\end{aligned}
$$

PROBLEM 2 Determine the force in members $E F$ and $E L$ of the roof truss and state if members are in tension or compression.


PROBLEM 3 The two-member frame is pin connected at $\mathrm{C}, \mathrm{D}$ and E . The cable is attached to A , passes over the smooth peg at B , and is attached to a 100 lb load. Determine the horizontal and vertical reactions at pins C, D and E.


$$
100 \mathrm{lb} \quad \begin{array}{ll}
C_{x}=133 \mathrm{lb} & C_{y}=200 \mathrm{lb} \\
& E_{x}=33 \mathrm{lb} \\
& D_{y}=-100 \mathrm{lb} \\
& E_{y}=200 \mathrm{lb}
\end{array}
$$

PROBLEM 4 Draw the shear and bending moment diagrams for the beam. Label all critical points.


PROBLEM 5 A rope connecting two blocks is wrapped $3 / 4$ of a turn around a fixed peg. The coefficient of friction between the peg and the rope is 0.15 ; between the 65 lb block A and the floor is 0.40 . Determine the minimum weight of block B for which no motion occurs.


$$
W_{B}=9.37 \mathrm{lb}
$$

PROBLEM 6 Find the centroid $(\bar{x}, \bar{y})$ of the shaded area, where the x and y axes are located as shown. The circular hole has a radius of 1 mm . Notice that the origin of the $x-y$ coordinate system is at the lower right.


$$
\begin{aligned}
& \bar{x}=-4 \mathrm{~mm} \\
& \bar{y}=2.73 \mathrm{~mm}
\end{aligned}
$$

PROBLEM 7 The gate has water of depth 8 ft on one side. The width of the gate (into the page) is 3 ft . The pin at $A$ is located at the midpoint of the gate. The specific weight of the water is $62.4 \mathrm{lb} / \mathrm{ft}^{3}$. Find the horizontal and vertical reactions at pin $A$ and the reaction at support $B$ due to the water pressure on the gate. Note that the support at $B$ is smooth and perpendicular to the gate.


PROBLEM 8 Determine the moment of inertia of the shaded area about the $x$-axis by integration.



