\qquad

1. The motor at B winds up the cord attached to the $65-\mathrm{lb}$ crate with a constant speed.

Determine the force in rope $C D$ supporting the pulley and the angle 2 for equilibrium. Neglect the size of the pulley at C.

This relation may be helpful: $\tan 2=\sin 2 / \cos 2$

2. Determine the magnitudes of $\mathbf{F}_{1}, \mathbf{F}_{2}$, and \mathbf{F}_{3} for equilibrium of the particle.

3. Determine the moment of the force F about point O. The force has coordinate direction angles of " $=60^{\circ}$, $\$=120^{\circ},\left(=45^{\circ}\right.$. Express the result as a Cartesian vector.

4. Replace the loading on the beam by an equivalent $2.5 \mathrm{kN} / \mathrm{m}$ resultant force and specify its location, measured from point A.

