\qquad

1. Using the coordinate axes shown, write equations for the shear force $\mathrm{V}(\mathrm{x})$ and bending moment $\mathrm{M}(\mathrm{x})$ for the portion of the beam in the interval $-5<x<0 \mathrm{~m}$.
(Look at Problem 2 before proceeding.)

2. Draw complete shear and moment diagrams for the beam in Problem 1.

3. Block A has a weight of 100 lb and rests on a surface for which : $=0.25$. If the coefficient of static friction between the cord and the fixed peg at C is : ${ }_{\mathrm{s}}=0.3$, determine the greatest weight of the suspended cylinder B without causing motion.

4. Locate the center of gravity of the two-block assembly. The specific weights of the materials A and B are $\mathrm{C}_{\mathrm{A}}=150 \mathrm{lb} / \mathrm{ft}^{3}$ and $\mathrm{C}_{\mathrm{B}}=400 \mathrm{lb} / \mathrm{ft}^{3}$, respectively.

