\qquad

1. The square gate $A B$ is held in the position shown by hinges along its top edge A and by a frictionless stop at B. For a depth of water $d=3.5 \mathrm{ft}$, determine the force exerted on the gate by the stop at B. Assume the weight density of water is $\left(=64 \mathrm{lb} / \mathrm{ft}^{3}\right.$.

2. Determine the radius of gyration of the shaded area about the y-axis, k_{y}.

3. Determine $\mathrm{I}_{\mathrm{x}}, \mathrm{I}_{\mathrm{y}}$, and I_{xy} for the cross-sectional area with respect to the x and y axes that have their origin located at the centroid C.

4. Part (a) - Determine the direction of the principal axes, 2_{p}, with origin located at C, and the principal moments of inertia, I_{xp} and I_{yp}, of the area about these axes. (Note that this is the same area used in Problem 3.)

Part (b) - Draw Mohr's circle for the area above.

