1. Using the coordinate axes shown, write equations for the shear force $V(x)$ and bending moment $M(x)$ for the portion of the beam in the interval $4<x<6 \mathrm{~m}$.
(Look at Problem 2 before proceeding.)

2. Draw complete shear and moment diagrams for the beam in Problem 1.

3. A rope is attached to a $35-\mathrm{lb}$ crate and passes around two fixed pegs. The $45-\mathrm{lb}$ crate is attached to a wall by a second cord. The coefficient of friction between the two crates is 0.25 ; between the crate and the floor, 0.25 ; and between the rope and the pegs, 0.20 . Determine the minimum force \boldsymbol{P} that must be used to cause motion.

4. Locate the centroid of the volume shown if $\mathrm{R}=10 \mathrm{in}$. and $\mathrm{h}=32 \mathrm{in}$.

