1. The gate at the end of a 3 - ft -wide fresh water channel is fabricated from three $240-\mathrm{lb}$, rectangular steel plates. The gate is hinged at $A$ and rests against a frictionless support at $D$. Knowing that $d=2.5 \mathrm{ft}$, determine the reactions at $\boldsymbol{A}$ and $\boldsymbol{D}$. Assume $\gamma=62.4 \mathrm{lb} / \mathrm{ft}^{3}$.


## BE 50 - Statics - Winter 2005

Name:
Exam 4 - Fluid Pressure, Moment of Inertia
Section: J
2. Determine by integration the product of inertia $\boldsymbol{I}_{x y}$ of the shaded area with respect to the $x$ and $y$ axes.


Exam 4 - Fluid Pressure, Moment of Inertia

Name:
Section: J
3. Determine the moments of inertia $\boldsymbol{I}_{\boldsymbol{x}}$ and $\boldsymbol{I}_{\boldsymbol{y}}$ of the area shown with respect to centroidal axes respectively parallel and perpendicular to side $A B$.


## BE 50 - Statics - Winter 2005

Exam 4 - Fluid Pressure, Moment of Inertia

Name:
Section: J
4. Determine the angle $\theta_{p}$ of the principal axes with origin located at point $C$ and the principal moments of inertia $\boldsymbol{I}_{\boldsymbol{m a x}}$ and $\boldsymbol{I}_{\boldsymbol{m i n}}$ of the shaded area.


