BE 50 - Statics - Winter 2005

Exam 4 – Fluid Pressure, Moment of Inertia

Name: Section: J

1. The gate at the end of a 3-ft-wide fresh water channel is fabricated from three 240-lb, rectangular steel plates. The gate is hinged at *A* and rests against a frictionless support at *D*. Knowing that d = 2.5 ft, determine the **reactions at** *A* and *D*. Assume $\gamma = 62.4$ lb/ft³.

BE 50 - Statics - Winter 2005

Exam 4 - Fluid Pressure, Moment of Inertia

2. Determine by integration the product of inertia I_{xy} of the shaded area with respect to the x and y axes.

Name:

Section: J

BE 50 - Statics - Winter 2005

Exam 4 – Fluid Pressure, Moment of Inertia

3. Determine the moments of inertia I_x and I_y of the area shown with respect to centroidal axes respectively parallel and perpendicular to side AB.

BE 50 - Statics - Winter 2005 Exam 4 – Fluid Pressure, Moment of Inertia

Name: Section: J

4. Determine the angle θ_p of the principal axes with origin located at point C and the principal moments of inertia I_{max} and I_{min} of the shaded area.

