IDE 50 S07 – Exam 4

Name: _____

1. Determine the reactions at *A* and *B*.

2. The Pratt bridge truss supports five forces (F = 300 kN). The dimension L = 8 m. Determine the force in members *BC*, *BI*, and *BJ*, and state whether they are in tension or compression.

3. Draw the shear force and bending moment diagrams, and label all peak values. The ground reactions are shown.

1	 	
 	, 	· · · · · · · · · · · · · · · · · · ·
 	 	 I I I I
	 	·
 	 	 I I I I
	- 	

4. The refrigerator weights 220 lb. It is supported at *A* and *B*. The coefficient of static friction between the supports and the floor is $\mu_s = 0.2$. The distance h = 60 in and the dimension b = 30 in. Determine the force *F* required to <u>tip</u> the refrigerator and the force *F* to <u>slip</u> the refrigerator. Does it tip or slip first?

5. Determine y-bar.

6. The width of the dam (dimension into the page) is 8 ft. The weight density of the water is $\gamma = 62.4$ lb/ft3. If you neglect the weight of the dam, what is the reaction at B?

7. Determine I_x .

8. Determine I_x and I_y .

