1. The frame shown is subjected to a horizontal force $\mathbf{F}=300 \mathrm{j} \mathrm{N}$ acting at the point $\mathbf{B}$. Determine the magnitude of the components of this force parallel and perpendicular to member AB.

Ans. $F_{A B}=35 \mathrm{kN}(\mathrm{c})$

$$
\begin{align*}
& F_{E K}=0 \\
& F_{D E}=6 \mathrm{kN} \tag{T}
\end{align*}
$$


2. For the truss shown below, find the force in members $\mathrm{AB}, \mathrm{EK}$ and DE and indicate whether they are in tension or compression.

3. A beam is supported by a pin and a rope over two pulleys and is loaded as shown. Draw the shear and bending moment diagrams for the beam. Label all critical points.

4. A block weighing 100 pounds is kept in place on a frictionless wedge by a cord suspended over a fixed peg as shown. The coefficient of static friction between the peg and the cord is 0.3 . Determine the range of values for $\mathbf{T}$ so that the block is held in equilibrium.

7. For the shaded area find the values of $I_{x}, I_{y}$ and $I_{x y}$ with respect to the $x, y$ axes. Through

8. A solid gate with a uniform triangular cross section weighs 2000 lbs . The gate is submerged in a liquid with a weight density of $\gamma=112.4 \mathrm{lb} / \mathrm{f}^{3}$. If the hinge at A is smooth, determine the total force ( F ) required to open the gate when the surface of the liquid is 3 ft above point $A$. The depth of the gate (into the paper) is 4 ft .

