Winter semester 1998 statics final

1. A homogeneous sphere with a mass of 40 kg rests against two smooth (frictionless) planes that form a V-shaped trough. Determine the magnitude of the forces exerted on the sphere by the planes at contact points A and B .

$$
\text { Aus: } N_{A}=203 \mathrm{~N} ; N_{B}=28700
$$

5. Locate the centroid of the shaded area.

$$
\text { Ans: } \bar{x}=\bar{y}=1.47^{\prime \prime}
$$

6. Determine the moment of inertia of the shaded area with respect to the x-axis (ie. find I_{x}).

ANS: $I_{x}=242.6 \mathrm{~m}^{4}$
7. For the beam loaded as shown, draw the shear and bending moment diagrams and label all pertinent points (20 points). Also, write the equation for the bending moment in region B-C (5 points). Note that the support reactions are given.

8. Blocks A and B are connected by a cable that passes over pulley C which can rotate freely. Knowing that the coefficient of static friction at all surfaces is $\mu_{5}=0.12$, determine the smallest value of the force P that will hold the blocks at rest. Blocks A and B weigh 12 lbs and 6 lbs , respectively.

Aus:
$P=16.7^{16}$

