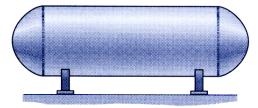

1. An element of material is subjected to the following state of plane stress: $F_x = 12$ MPa, $F_y = -8$ MPa, and $J_{xy} = -4$ MPa. Determine the principal stresses and show them on a sketch of a properly oriented element, and determine the maximum in-plane shear stress and the average normal stress and show them on a sketch of a properly oriented element.


2. An element of material is subjected to the following state of plane strain: $_{,x} = 300$.; $_{,y} = 750$.; and $_{xy} = 450$. Determine the strain components $_{,x}$, $_{,y}$, and $_{xy}$ for an element rotated (counterclockwise) by an angle of $2 = 30^{\circ}$. Use the calculated strains to produce a sketch of the deformed x'y' element.

3. At a point on the surface of a steel machine component, the strain rosette measured the following strains: , $_a$ = 700: , , $_b$ = 560: , and , $_c$ = -280: . Letting E = 30×10⁶ psi and < = 0.30, determine the stress components F_x , F_y , and J_{xy} at the rosette location.

4. Hemispherical end caps are attached to a cylindrical main body to form a propane storage tank. The tank has an inside diameter of $d_i = 40$ in. and is to be subjected to a maximum internal gage pressure of p = 120 psi. The allowable tensile stress F in the wall of the tank is 12 ksi. Determine the minimum wall thickness t_c of the cylindrical part of the tank, and determine the minimum wall thickness t_s of the spherical part of the tank.

