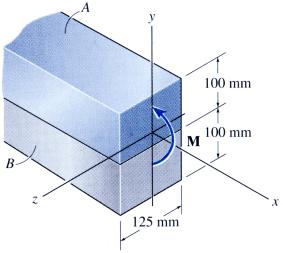

Exam 2 – Bending and Shear Stress

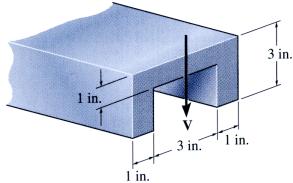
Section: D

Name:

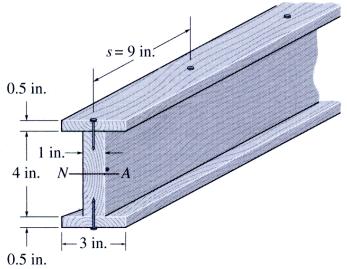

1. If the beam has a square cross section of 9 in. on each side, determine the maximum bending stress σ (absolute value) in the beam.

Exam 2 – Bending and Shear Stress

Name: Section: D


2. The composite beam is made of steel (A) and brass (B). If the allowable bending stress for the steel is $\sigma_s = 180$ MPa and for the brass $\sigma_b = 60$ MPa, determine the maximum moment M that can be applied to the beam. Assume $E_s = 200$ GPa and $E_b = 101$ MPa.

Exam 2 – Bending and Shear Stress


Name: Section: D

3. If the applied shear force V = 18 kips, determine the maximum shear stress τ in the beam.

Exam 2 – Bending and Shear Stress

4. If nails having a shear strength of 40 lb are spaced at 9 in., determine the largest vertical shear force *V* that can supported by the beam so that the fasteners will not fail.

Name:

Section: D