Student _____

1. The following strains were measured from the strain gage rosette shown:

 $\epsilon_a = -555 \ \mu\epsilon$ $\epsilon_b = +925 \ \mu\epsilon$ $\epsilon_c = +740 \ \mu\epsilon$

If Poisson's ratio is v = 0.3,

- (a) Determine the principal strains
- (b) Determine the maximum shearing strain
- (c) Determine the angle from the x axis to the largest tensile principal strain.

2. A steel tie rod [E = 200 GPa; $\alpha = 11.9 \times 10^{-6}$ /°C] containing a rigid turnbuckle is attached to rigid walls. During the summer when the temperature was 30°C, the turnbuckle was tightened to produce a tension stress in the tie rod of 15 MPa. The elastic strength for the steel is 250 MPa and the ultimate strength is 450 MPa. A factor of safety of 2 is required with respect to the elastic strength, and a factor of safety of 4 is required with respect to the ultimate strength.

Is the tie rod overstressed in the winter when the temperature is -10° C? Show justification for your answer.

Student

3. A motor delivers 100 hp at 600 rpm to the end of a shaft. The gears at B and C take out 40 hp and 60 hp, respectively. Determine the minimum diameter **d** required for the shaft if the allowable shear stress is 7,000 psi and the angle of twist between the motor and gear C is limited to 2°. Assume $G = 12 \times 10^6$ psi. [Note: 1 hp = 550 lb-ft/s]

4. The tee-shaped column supports the loading shown. Determine the normal stresses at points H and K.

- A W14×53 wide-flange beam supports the distributed load and concentrated load shown. Consider location B on the beam, which is located just to the left of the 12 kip concentrated load. At the junction between the top flange and the beam web, determine:
 - (a) The bending stress σ
 - (b) The shear stress τ .

Wide-Flange Sections or W Shapes

Designation $in. imes lb/ft$	Area A in ²	Depth d in.	Web thickness t _w in.	Flange		<i>x–x</i> axis			y–y axis		
				width b _f in.	thickness t _f in.	I in ⁴	S in ³	r in.	I in ⁴	S in ³	r in.
$W14 \times 43$	12.6	13.66	0.305	7.995	0.530	428	62.7	5.82	45.2	11.3	1.89
$W14 \times 38$	11.2	14.10	0.310	6.770	0.515	385	54.6	5.87	26.7	7.88	1.55
$W14 \times 34$	10.0	13.98	0.285	6.745	0.455	340	48.6	5.83	23.3	6.91	1.53
$W14 \times 30$	8.85	13.84	0.270	6.730	0.385	291	42.0	5.73	19.6	5.82	1.49
$W14 \times 26$	7.69	13.91	0.255	5.025	0.420	245	35.3	5.65	8.91	3.54	1.08
$W14 \times 22$	6.49	13.74	0.230	5.000	0.335	199	29.0	5.54	7.00	2.80	1.04

Include proper units Box-in your answers

Student _____

6. A 45° strain gage rosette is attached to a compressed air tank with gage "a" oriented parallel to the long axis of the tank. The tank is made of steel that has a modulus of elasticity of E = 29×10^6 psi and Poisson's ratio of v = 0.3. The inside diameter of the tank is 40 inches, the wall thickness is 0.375 inches, and the internal pressure is 180 psi. Determine the strain measured by each strain gage: ε_a , ε_b , and ε_c .

Student

7. For the structure shown, determine the normal and shear stresses acting at point H. Show the results on a stress element.

Student _

8. A W305×97 structural steel beam supports the loadings shown. The moment of inertia for the beam is $I = 222 \times 10^6 \text{ mm}^4$, and the modulus of elasticity is E = 200 GPa. Determine the deflection at the right end of the beam.

