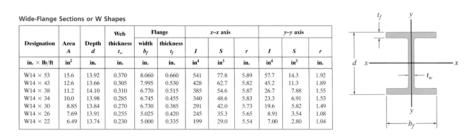
IDE 110 – Mechanics of Materials Dec 12, 2005

1. The following strains were measured from the strain gage rosette shown: $\epsilon_a = -555 \ \mu\epsilon$ $\epsilon_b = +925 \ \mu\epsilon$ $\epsilon_c = +740 \ \mu\epsilon$

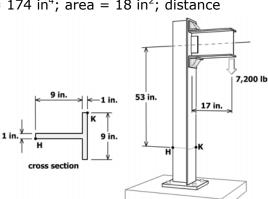
If Poisson's ratio is v = 0.3,

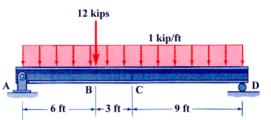
- (a) Determine the principal strains. $[\epsilon_1$ = 1,301 $\mu\epsilon,\,\epsilon_2$ = -561 $\mu\epsilon]$
- (b) Determine the maximum shearing strain [γ_{max} = 1,862 µrad]
- (c) Determine the angle from the x axis to the largest tensile principal strain. [θ = 86.7° cw]
- 2. A steel tie rod $[E = 200 \text{ GPa}; \alpha = 11.9 \times 10^{-6}/^{\circ}\text{C}]$ containing a rigid turnbuckle is attached to rigid walls. During the summer when the temperature was 30°C, the turnbuckle was tightened to produce a tension stress in the tie rod of 15 MPa. The elastic strength for the steel is 250 MPa and the ultimate strength is 450 MPa. A factor of safety of 2 is required with respect to the elastic strength, and a factor of safety of 4 is required with respect to the ultimate strength.

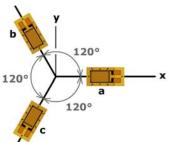
Is the tie rod overstressed in the winter when the temperature is -10° C? Show justification for your answer. [$\sigma = 110.2$ MPa; FS_{elastic} = 2.27; FS_{ult} = 4.08; not overstressed]

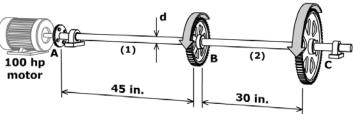

3. A motor delivers 100 hp at 600 rpm to the end of a shaft. The gears at B and C take out 40 hp and 60 hp, respectively. Determine the minimum diameter **d** required for the shaft if the allowable shear stress is 7,000 psi and the angle of twist between the motor and gear C is limited to 2°. Assume G = 12×10^6 psi. [Note: 1 hp = 550 lb-ft/s] [T₁ = 875.35 lb-ft; T₂ = 525.21 lb-ft; based on she

to 2°. Assume G =
$$12 \times 10^6$$
 psi. [Note: 1 hp = 550 lb-ft/s]
[T₁ = 875.35 lb-ft; T₂ = 525.21 lb-ft; based on shear stress, d_{min} = 1.970 in.; based on angle of twist, d_{min} = 2.003 in.; therefore, d_{min} = 2.00 in.]

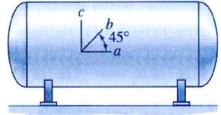

4. The tee-shaped column supports the loading shown. Determine the normal stresses at points H and K. [centroid is located 3 in. to the left of point K; moment of inertia = 174 in^4 ; area = 18 in^2 ; distance

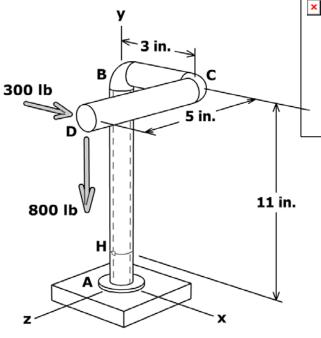

from centroid to 7,200 lb force is 20 in.; moment at section of interest is (7,200 lb)(20 in.) = 144,000 lb-in; axial force at section of interest is 7,200 lb (C).


At point H, bending stress is 5,793 psi (T) and axial stress is 400 psi (C); therefore, normal stress at H = 5,393 psi (T). At point K, bending stress is 2,483 psi (C) and axial stress is 400 psi (C); therefore, normal stress at K = 2,883 psi (C).]



- 5. A W14×53 wide-flange beam supports the distributed load and concentrated load shown. Consider location B on the beam, which is located **just to the left** of the 12 kip concentrated load. At the junction between the top flange and the beam web, determine:
 - (a) The bending stress σ
 - (b) The shear stress τ .
 - $[V = 11 \text{ kips}; M = +84 \text{ kip-ft}; I = 541 \text{ in}^4; y = +6.30 \text{ in.}; \sigma = -11,738 \text{ psi} = 11,738 \text{ psi} (C); Q = 35.2689 \text{ in}^3; t = t_w = 0.370 \text{ in.}; \tau = 1,938 \text{ psi} (downward on right face of stress element)]$



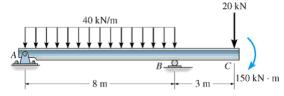

IDE 110 – Mechanics of Materials Dec 12, 2005

6. A 45° strain gage rosette is attached to a compressed air tank with gage "a" oriented parallel to the long axis of the tank. The tank is made of steel that has a modulus of elasticity of E = 29×10^6 psi and Poisson's ratio of v = 0.3. The inside diameter of the tank is 40 inches, the wall thickness is 0.375 inches, and the internal pressure is 180 psi. Determine the strain measured by each strain gage: ε_a , ε_b , and ε_c .

 $[\sigma_{\text{long}} = 4,800 \text{ psi}; \sigma_{\text{hoop}} = 9,600 \text{ psi}; \text{ note: shear stress is zero on planes perpendicular to the longitudinal direction and to the circumferential directions; use Generalized Hooke's Law to find <math>\varepsilon_a = \varepsilon_x = 66.21 \ \mu\epsilon$ and $\varepsilon_c = \varepsilon_y = 281.4 \ \mu\epsilon$; use strain transformation equation to find $\varepsilon_b = 173.79 \ \mu\epsilon$ at $\theta = 45^{\circ}$]

7. For the structure shown, determine the normal and shear stresses acting at point H. Show the results on a stress element.

[At the section of interest, the forces are $F_x = 300 \text{ lb}, F_y = -800 \text{ lb}, F_z = 0 \text{ lb}.$


The moments are $M_{\rm x}$ = +4,000 lb-in, $M_{\rm y}$ = +1,500 lb-in, and M_z = -5,700 lb-in.

Q for the solid circular shape is 0.28125 in³.

At point H, the axial force ($F_y = -800$ lb) causes a normal stress of 452.7 psi (C). The shear force in the x direction ($F_x = 300$ lb) creates a shear stress of 226.4 psi, which acts in the positive x direction on the positive y face of the stress element. The torque at the section of interest ($M_y = +1,500$ lb-in) creates a shear stress of 2,263.5 psi, which also acts in the positive x direction on the positive y face of the stress element. The bending moment about the x axis ($M_x = +4,000$ lb-in) creates a compression normal stress at H of 17,202.9 psi (C). The bending moment about the z axis does not create a normal stress at H since H is on the

neutral surface for M_z . Altogether, the combined normal stress in the y direction at H is 12,525 psi (C) and the combined shear stress is 2,490 psi, which acts in the positive x direction on the positive y face of the stress element. There is no normal stress in the x direction at H for this structure.]

8. A W305×97 structural steel beam supports the loadings shown. The moment of inertia for the beam is $I = 222 \times 10^6 \text{ mm}^4$, and the modulus of elasticity is E = 200 GPa. Determine the deflection at the right end of the beam. [$v_c = +0.5631 \text{ mm}$ (upward). To solve this problem, consider four cases: two simply supported (SS) cases and two cantilever cases.

SS case 1: Calculate θ at B for 40 kN/m acting on 8 m span. Use θ_B and 3 m overhang to calculate v_C . **SS case 2**: Moment at B created by 20 kN load is 60 kN-m. Add the 150 kN-m concentrated moment to find that the total moment required to support the overhang is 210 kN-m. Apply a concentrated moment of 210 kN-m acting clockwise to the 8-m simple span at B and determine θ_B . Use θ_B and 3 m overhang to calculate v_C .

Cantilever case 3: Consider a 20 kN load acting at the tip of a 3-m long cantilever beam and calculate $v_{\text{C}}.$

Cantilever case 4: Consider a 150 kN-m moment acting clockwise at the tip of a 3-m long cantilever beam and calculate v_{c} .]