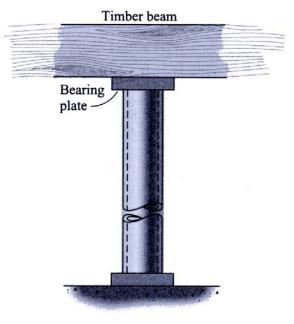

Exam 1 – Stress; Strain; Axial Structures

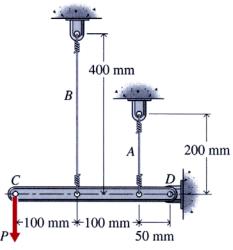
Name: Section: A


1. The hanger assembly is used to support a distributed loading of w = 0.8 kip/ft. The 0.4-in.-diameter bolt at *A* is in double shear and has an allowable shear stress  $\tau_{allow} = 25$  ksi. The 0.5-in.-diameter rod AB has an allowable normal stress  $\sigma_{allow} = 38$  ksi. Determine the factor of safety FS<sub>bolt</sub> and FS<sub>rod</sub> for the bolt and rod, respectively.



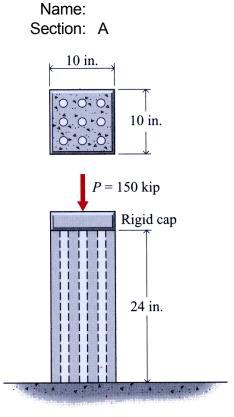
Exam 1 – Stress; Strain; Axial Structures

Name: Section: A


- 2. The steel (E = 29,000 ksi) pipe column has an outside diameter of 6 in., a wall thickness of 0.6 in., and a length of 24 in. The solid-circular bearing plate has a diameter of 8 in. The axial load imposed on the column by the timber beam is 30 kip. Determine:
  - a) the normal stress in the column.
  - b) the bearing stress between the column and the bearing plate.
  - c) the bearing stress between the bearing plate and the timber beam.
  - d) the change in length of the column.
  - e) the axial normal strain in the column.



Exam 1 – Stress; Strain; Axial Structures


Name: Section: A

- 3. Rigid member *CD* is subjected to load P = 5 kN. Members *A* and *B* are steel (E = 200 GPa) wires, and each has a cross-sectional area of 80 mm<sup>2</sup>. Determine:
  - a) the normal force in each wire  $N_A$  and  $N_B$ .
  - b) the vertical displacement  $\delta_c$  of point C.



Exam 1 – Stress; Strain; Axial Structures

4. Nine <sup>3</sup>/<sub>4</sub>-in.-diameter steel ( $E_s = 30,000$  ksi) reinforcement bars were used when the short concrete ( $E_c = 4500$  ksi) pier was constructed. After a load *P* of 150 kip was applied to the pier, the temperature increased 100°F. The coefficient of thermal expansion for steel and concrete are  $\alpha_s = 6.6 \times 10^{-6}$ /°F and  $\alpha_c = 6.0 \times 10^{-6}$ /°F, respectively. Determine the normal force in the concrete N<sub>c</sub> and in the steel bars N<sub>s</sub>.

