1. A 2380 Nm torque is applied at D as shown. Shafts (1) and (2) are both 44-mm-diameter solid steel shafts $600-\mathrm{mm}$ long ($\mathrm{G}=$ $80 \mathrm{GPa})$. Gear B has a $250-\mathrm{mm}$ diameter, and gear C has a $350-\mathrm{mm}$ diameter. Determine:

a) The maximum stress in shaft (2).
b) The maximum stress in shaft (1).
c) The rotation angle of gear D relative to motor A .
2. A composite shaft consists of a hollow aluminum shaft (1) ($\mathrm{G}=26 \mathrm{GPa}$) bonded to a hollow bronze shaft (2) ($\mathrm{G}=38$ GPa). The outside diameter of shaft (1) is 50 mm , and the inside diameter is 42 mm . The outside diameter of shaft (2) is 42 mm , and the inside diameter is 30 mm . Both shafts are 1000 mm long. A concentrated torque of $\mathrm{T}=1400 \mathrm{Nm}$ is applied to the composite shaft at the free end B. Determine:
a) The torques T_{1} and T_{2} developed in the shafts.
b) The maximum shear stress τ_{1} in shaft (1).

IDE 110 - Mechanics of Materials - Summer 2006
Exam 2 - Torsion, Stress and Strain Rotations
3. The state of plane stress at a point is shown on the element. Determine:
a) The principal stresses σ_{1} and σ_{2}. (Draw these on a properly oriented and labeled element.)
b) The absolute maximum shear stress $\tau_{\text {abs max }}$. (This can be given simply as a boxed number.)

Name:
Section: A

4. The strain rosette shown was used to obtain strain data at a point on the free surface of a machine part. Determine:
a) The normal strains ε_{x} and ε_{y} and shear strain γ_{xy}. (These can be given simply as boxed numbers.)
b) The maximum in-plane shear strain $\gamma_{\text {max }}$. (This can be given simply as a boxed number.)

Name:
Section: A

$$
\begin{aligned}
& \varepsilon_{\mathrm{a}}=-350 \mu \\
& \varepsilon_{\mathrm{b}}=-600 \mu \\
& \varepsilon_{\mathrm{c}}=-450 \mu
\end{aligned}
$$

