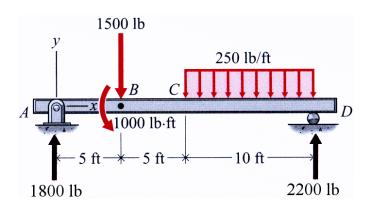
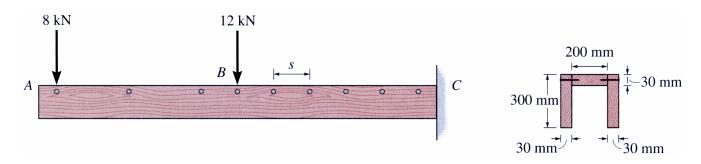

Exam 3 – Hooke's Law, Pressure, and Beam Stresses


Name: Section: A

- 1. The cylindrical pressure vessel has an inner radius of 1.25 m and a wall thickness of 15 mm. It is made from steel (E = 200 GPa and G = 76 GPa) plates that are welded along the 45° seam. If the vessel is subjected to an internal pressure of 8 MPa, determine:
 - a. The absolute maxium shearing stress $\tau_{absolute}$ at a point on the inside surface of the vessel.
 - b. The axial and hoop strains, ε_{axial} and ε_{hoop} .

Exam 3 – Hooke's Law, Pressure, and Beam Stresses

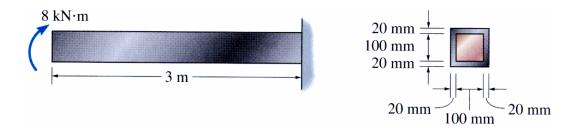
- 2. A W12×65 beam is loaded as shown. Determine:
 - a. The maxium tensile and compressive flexural stresses in the beam.
 - b. The maxium horizontal shearing stress in the beam.


Name:

Section: A

Exam 3 – Hooke's Law, Pressure, and Beam Stresses

Name: Section: A


3. The beam is constructed from three boards as shown. If each nail can support a shear force of 300 N, determine the maximum spacing s of the nails within region BC.

Exam 3 – Hooke's Law, Pressure, and Beam Stresses

Name: Section: A

4. The member has a brass core bonded to a steel casing. If a couple moment 8 kN·m is applied at its end, determine the maximum bending stress in the brass core. $E_{br} = 100$ GPa, $E_{st} = 200$ GPa.

IDE 110 - Mechanics of Materials - Summer 2006 Exam 3 – Hooke's Law, Pressure, and Beam Stresses

Table B-1	Wide-Flange	Beams	(U.S.	Customary	Units)
-----------	-------------	-------	-------	-----------	--------

			Flange		Web						
		Т	Thick-	Thick-	Axis X–X				Axis Y–Y		
Desig-	Area	Depth	Width	ness	ness	Ι	S	r	Ι	S	r
nation*	(in. ²)	(in.)	(in.)	(in.)	(in.)	(in. ⁴)	(in. ³)	(in.)	(in. ⁴)	(in. ³)	(in.)
$W36 \times 230$	67.6	35.90	16.470	1.260	0.760	15000	837	14.9	940	114	3.73
× 160	47.0	36.01	12.000	1.020	0.650	9750	542	14.4	295	49.1	2.50
$W33 \times 201$	59.1	33.68	15.745	1.150	0.715	11500	684	14.0	749	95.2	3.56
× 152	44.7	33.49	11.565	1.055	0.635	8160	487	13.5	273	47.2	2.47
\times 130	38.3	33.09	11.510	0.855	0.580	6710	406	13.2	218	37.9	2.39
$W30 \times 132$	38.9	30.31	10.545	1.000	0.615	5770	380	12.2	196	37.2	2.25
× 108	31.7	29.83	10.475	0.760	0.545	4470	299	11.9	146	27.9	2.15
$W27 \times 146$	42.9	27.38	13.965	0.975	0.605	5630	411	11.4	443	63.5	3.21
× 94	27.7	26.92	9.990	0.745	0.490	3270	243	10.9	124	24.8	2.12
$W24 \times 104$	30.6	24.06	12.750	0.750	0.500	3100	258	10.1	259	40.7	2.91
× 84	24.7	24.10	9.020	0.770	0.470	2370	196	9.79	94.4	20.9	1.95
× 62	18.2	23.74	7.040	0.590	0.430	1550	131	9.23	34.5	9.80	1.38
$W21 \times 101$	29.8	21.36	12.290	0.800	0.500	2420	227	9.02	248	40.3	2.89
× 83	24.3	21.43	8.355	0.835	0.515	1830	171	8.67	81.4	19.5	1.83
$\times 62$	18.3	20.99	8.240	0.615	0.400	1330	127	8.54	57.5	13.9	1.77
$W18 \times 97$	28.5	18.59	11.145	0.870	0.535	1750	188	7.82	201	36.1	2.65
× 76	22.3	18.21	11.035	0.680	0.425	1330	146	7.73	152	27.6	2.61
\times 60	17.6	18.24	7.555	0.695	0.415	984	108	7.47	50.1	13.3	1.69
$W16 \times 100$	29.4	16.97	10.425	0.985	0.585	1490	175	7.10	186	35.7	2.52
× 67	19.7	16.33	10.235	0.665	0.395	954	117	6.96	119	23.2	2.46
$\times 40$	11.8	16.01	6.995	0.505	0.305	518	64.7	6.63	28.9	8.25	1.57
$\times 26$	7.68	15.69	5.500	0.345	0.250	301	38.4	6.26	9.59	3.49	1.12
$W14 \times 120$	35.3	14.48	14.670	0.940	0.590	1380	190	6.24	495	67.5	3.74
× 82	24.1	14.31	10.130	0.855	0.510	882	123	6.05	148	29.3	2.48
\times 43	12.6	13.66	7.995	0.530	0.305	428	62.7	5.82	45.2	11.3	1.89
\times 30	8.85	13.84	6.730	0.385	0.270	291	42.0	5.73	19.6	5.82	1.49
$W12 \times 96$	28.2	12.71	12.160	0.900	0.550	833	131	5.44	270	44.4	3.09
$\times 65$	19.1	12.12	12.000	0.605	0.390	533	87.9	5.28	174	29.1	3.02
\times 50	14.7	12.12	8.080	0.640	0.370	394	64.7	5.18	56.3	13.9	1.96
\times 30 \times 30	8.79	12.34	6.520	0.440	0.260	238	38.6	5.21	20.3	6.24	1.52
$W10 \times 60$	17.6	10.22	10.080	0.680	0.420	341	66.7	4.39	116	23.0	2.57
× 45	13.3	10.10	8.020	0.620	0.350	248	49.1	4.33	53.4	13.3	2.01
\times 30	8.84	10.47	5.810	0.510	0.300	170	32.4	4.38	16.7	5.75	1.37
\times 22	6.49	10.17	5.750	0.360	0.240	118	23.2	4.27	11.4	3.97	1.33
$W8 \times 40$	11.7	8.25	8.070	0.560	0.360	146	35.5	3.53	49.1	12.2	2.04
$\times 31$	9.13	8.00	7.995	0.435	0.285	110	27.5	3.47	37.1	9.27	2.02
$\times 31 \times 24$	7.08	7.93	6.495	0.400	0.245	82.8	20.9	3.42	18.3	5.63	1.61
$\times 24 \times 15$	4.44	8.11	4.015	0.315	0.245	48.0	11.8	3.29	3.41	1.70	0.876
	4.44 7.34	6.38	6.080	0.455	0.320	53.4	16.7	2.70	17.1	5.61	1.52
$W6 \times 25 \times 16$		6.28	4.030	0.405	0.260	32.1	10.2	2.60	4.43	2.20	0.967
\times 16	4.74	6.28 5.01	5.000	0.405	0.240	21.3	8.51	2.13	7.51	3.00	1.27
$W5 \times 16$	4.68		4.060	0.345	0.240	11.3	5.46	1.72	3.86	1.90	1.00
$W4 \times 13$	3.83	4.16	4.060	0.545	0.280	11.5	5.40	1./2	5.00		

Courtesy of the American Institute of Steel Construction.

*W means wide-flange beam, followed by the nominal depth in inches, then the weight in pounds per foot of length.