IDE 110 - Mechanics of Materials

May 9, 2006

1000 lb determine the minimum diameter for the pin at joint D if the average shear stress in the pin is joint D if the average shear stress in the pin is
limited to 7,500 psi. Note: The pin is in single shear.

1. For the pin-connected structure shown, Smooth
\qquad

\qquad

2. The rigid plate shown in the figure pivots at point C and is held by two horizontal rods at points A and B. Each rod has a cross sectional area of $474 \mathrm{~mm}^{2}$ and a modulus of elasticity of $E=1,140 \mathrm{MPa}$. The horizontal rods are both the same length. If a vertical load of $P=2.2 \mathrm{kN}$ is applied at point D as shown, find the tension force in $\operatorname{Rod} A$.

IDE 110 - Mechanics of Materials

May 9, 2006
5. The $100-\mathrm{mm}$ diameter segment $A B C$ of the shaft is securely connected to the $60-\mathrm{mm}$ diameter segment $C D$, and the ends of the shaft are fixed to rigid walls. The moduli of rigidity are $G=40 \mathrm{GPa}$ for ABC and $G=80 \mathrm{GPa}$ for CD. When torque $\mathrm{T}_{\mathrm{B}}=15 \mathrm{kN}-\mathrm{m}$ is applied as shown, determine the maximum shearing stresses $\tau_{A B}, \tau_{B C}$ and $\tau_{C D}$ for the three regions of the shaft.
\qquad

6. A simply supported beam is loaded as shown.
(a) Determine the shear force V and bending moment M acting at section a-a, which is located 4 ft from pin support A.
(b) At section a-a, determine the bending stress σ_{x} and the transverse shear stress $\tau_{x y}$ at point H, which is located 2 in . above the z centroidal axis.
(c) Show σ_{x} and $\tau_{x y}$ on a stress element for point H.

7. The vertical structural member consists of a steel pipe with an outside diameter of 10 in . and an inside diameter of 9 in. For the loads shown, determine the normal and shear stresses acting at point H, which is located on the x axis at the lower end of the vertical member. Show the stresses at H on a stress element.

IDE 110 - Mechanics of Materials

May 9, 2006
8. A steel ($E=29 \times 10^{6} \mathrm{psi}$ and $I=120 \mathrm{in}^{4}$) beam is loaded and supported as shown. Additional support is provided at B by a 6×6-in. timber ($E=1.5 \times 10^{6}$ $\mathrm{psi})$ post BD . Determine the load carried by the post if it is unstressed before the $530 \mathrm{lb} / \mathrm{ft}$ uniform load is applied to the beam.

