IDE 110 S08 Test 2 Name:

1. If the applied load P = 10 kN, determine the axial force in member (1). P < ]| ¢

N1 = kN

2. If the axial force in member (1) is 38,420 Ib, determine the
resultant force at joint C.

C= Ib

3. Determine the normal force in segments (1), (2) and (3),

and circle whether they are in tension (T) or compression ' 30 kip
©).

(@ Ni= kip (T or C)

() N=_ kip(TorC)

(c) N3= kip (T or C)



4. The single shear connection consists of six 26-mm-diameter
bolts. If the ultimage strength of the bolts is 720 MPa,

determine the factor of safety for the connection at an applied

P=570 kN
load of P =570 kN.

FS =

5. Member (1) is a steel bar with a cross-sectional area of 1.75 in?
and a yield strength of 50 ksi. Member (2) is a pair of
aluminum bars having a combined cross-sectional area of 4.50
in? and a yield strength of 40 ksi. Having already done the
statics and knowing that the axial load in the members is N; =
0.7P and N, = 1.22P, determine the maximum allowable load
P that may be applied to the structure.

6. A 8-mm-diameter wire (E = 60 GPa) supports a tension
load of 3,500 N. If the total elongation of the wire must
not exceed 10 mm, determine the maximum allowable
length L of the wire.




7. Rigid bar ABC is supported by bronze bar (1) and aluminum rod
(2). A concentrated load P is applied the free end of aluminum rod
(3). Bronze rod (1) has a diameter of d; = 0.375 in. Aluminum
rods (2) and (3) have a diameter of d, = 0.625 in. and d3 = 1.0 in.
The yield strength of the bronze is 50 ksi, and the yield strength of
the aluminum is 36 ksi. Having already done the statics and
knowing that the axial load in bars (1) and (2) is N; = 0.375P and
N, = 0.625P, determine the magnitude of load P that can safely be
applied to the structure if a minimum factor of safety of 1.5 is
required.

8. Fill in the missing pieces of the following derivation. Numbers should be in meters and Newtons. Do

NOT solve for Ny or simplify your numbers.

A load of P = 170 kN is supported by a structure consisting of rigid
bar ABC, two identical solid bronze [E = 100 GPa] rods, and a solid
steel [E = 200 GPa] rod. The bronze rods (1) each have a diameter of
20 mm, and they are symmetrically positioned relative to the center
rod (2) and the applied load P. Steel rod (2) has a diameter of 24 mm.
All bars are unstressed before the load P is applied; however, there is a
3-mm clearance in the bolted connection at B. Determine the axial
load in the bronze bars.
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9. Write the statics and compatibility relationships for the following structures.

Statics: Compatibility:

write a formula relating write a formula
P, N; and Nz and state relating 6, and &
whether N; and N are in
tension or compression

(1) concrete column
(2) rebar
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10. Fill in the missing pieces of the following derivation. Numbers should be in inches and pounds. Do

NOT solve for Ny or simplify your numbers.

Rigid bar ABCD is supported by a pin connection at A and by
two axial bars (1) and (2). Bar (1) is a 30-in.-long bronze [E =
15,000 ksi, a = 9.4x10-6/°F] bar with a cross-sectional area of
1.25in% Bar (2) is a 40-in.-long aluminum alloy [E = 10,000
ksi, o = 12.5x10°°/°F] bar with a cross-sectional area of 2.00 in.?
Both bars are unstressed before the load P is applied. If a
concentrated load of P = 27 kips is applied to the rigid bar at D
and the temperature is decreased by 100°F, determine the axial
force in bar (1).
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TRIGONOMETRY

hypotenuze i =
opposie S 0 opp / hyp
cos 6 = adj / hyp
0 tan 6 = opp / adj
adjacent
STATICS
Symbol Meaning Equation Units SECOND MOMENTS OF PLANE AREAS
- . — — Rf(:tangularArca , _ b B B
XY, 2 centroid y=2y.A/ZA | in,m e A= v b=
position i i 2 e
hb®
moment | | _ 2 44 . -2 =
' lofinertia '~ Z(l + d?A) | in*'m " i b
2 Ly=0 g =
* 4
Jsolid circular shaft by -
riangular Area 1 3 bR?
polar | = pq4/32 MR Aslu b -
J  /moment in* m* n T % 5
of inertia |~ hollow circular shaft + * = % I = %
= m(d,* - d#)/32 oo i i
normal G SN
N force |b, N Circular Area PR - ﬂ_fn _ %
shear _ :
\Y; force V=[-wx)dx | Ib,N ) -
bending _ . L,=0
M moment M - I V(X) dx In-lb, Nm Semicircular Area =
¥ ¥ L wR*  8R* aR*
equilibrium *F=0 Ib, N e T e
EM(any point) = 0 |in-Ib, Nm L :vrTIi*
Quarter- _ wR* B 4R* _ 7R*
Cireular T 16 9w T
_ wR*
(T
(9 — 32)R* R*
T Ty Ty
MECHANICS OF MATERIALS
Topic| Symbol Meaning Equation Units
- Oaxial = N/A
G, sigma normal stress Touting = V/A psi, Pa
csbearing = Fb/ Ab
_ . i = ALL, = S/Lo o
€, epsilon normal strain _ in/in, m/m
Eiransverse — Ad/d
axial Y- 9amma shear strain ¥ = change in angle, rad
E Young's modulus, modulus of elasticity G = Eg (one-dimensional only) psi, Pa
G shear modulus, modulus of rigidity G=1ly=E/2(1+v) psi, Pa
Vv, nu Poisson's ratio v=-¢gle
deformation, elongation, deflection in, m
9, delta g 8= NLJEA + aATL
a., alpha |coefficient of thermal expansion (CTE) © in/finF, m/mC
F.S. factor of safety F.S. = actual strength / design strength




cylindrical, axial

Topic |Symbol Meaning Equation Units
T,
T, tau shear stress f§?<3g‘,') Tiorsion = T¢/ psi, Pa
¢. phi angle of twist ¢ = TL/GJ rad, degrees
; watts = Nm/s
torsion| P power T, =rT, hp=6600 in-Ib/s
P=To r,m, _rho
@, angular speed, speed of rotation 171 =272 rad/s
omega
G, normal stress o = -My/I psi, Pa
sigma _ ') beam ;
G, i = _ _ H
sigma composite beams, n EB/EA G, =-My/ U Gg = -NMy / T psi, Pa
flexure ——
T, tau shear stress | ;‘l Tyoum = VQ/Ib where Q = 2(y,, A ) psi, Pa
q shear flow 9= Vpeam @/ = NViast0nel/S
vory beam deflection v =J[ M(x) dx2/ EI in, m
Topic Equations Units
planar rotations principals and max in-plane shear
stress G, = (0,+0,)/2 + (0,-G,)/2 cos(20) + T, sin(20)|  tan(20,) = 21, / (0,-C,), 0, = Op + 459
trans.- o, = (GX+Gy)/2 - (GX-Gy)/Z cos(20) - txysin(29) Gip= (Gx+6y)/2 sart{[ (GX-Gy)/Z 12+ ‘ny2 } psi, Pa
formation Ty = <(0,-0,)/2 sin(26) + 1, cos(26) Tax = SAt{ [ (0,-0,)/2 P+ rxyz } = (0,-0,)2
Cavg = (Gx+0y)/2 =(04%0,)/2
planar rotations principals and max in-plane shear
strain €, = (E+E)2 + (€,-€,)/2 cos(20) + v, /2 sin(20) tan(20,) = v,, / (€,-€,), 0, =06, +45° osi. Pa
trang- €, = (8,+€ )12 - (8,-€,)/2 c08(20) - 7, /2 5In(20) ¢, , = (e, +€, V2 £ sart { [ (€,-€,)/2 12+ (yxy/2)2 }
formation Yu/2 = -(8,-€,)/2 sin(20) + v, /2 cos(20) Ymax/2 = sart{ [ (€,-€,)/2 2+ (ny/2)2 } in/in, m/m
€,= -V (e, + ey) / (1-v) Eavg = (E,4€,)12
1D strain to stress 2D stress to strain
- c= Ee €, = (GX-VGy) /E '
gl i P
c, = -V
law g ) g, = -v(gre ) [ (1-v) in/in, m/m
o, = E(g,+ve,) / (1-v?) 4 '
Y Y Yoy = TG = 2(1 +v)rxy/ E
Ty = GV, = BV, / 2(14V)
cSsF‘hericaI = pl'/2t o . =0
pressure G ylindrical, hoop = pr/t Gradl.al, f)ut.5|de= \ psi. Pa
o) = pr/2t radial, inside




