1. A cross section of a beam is shown. For any moment M about the *z*-axis, which point will have the greater bending stress magnitude (either tension or compression)?

Point *K*

Point H

2. If the beam in Problem 1 is subjected to a negative moment about the z-axis, which bending stress will have the greater magnitude?

_____ Compression bending stress

Tension bending stress

3. Determine the distance from the bottom of the cross section in Problem 1 to the centroid.

 $y_{\text{from bottom}} =$ _____in.

4. Determine the moment of inertia about the *z*-axis for the cross section shown. Note that the centroid is 5.167 in. from the bottom.

5. Determine the maximum bending moment in the following beams.

 $M_{max} =$ _____kN-m

 $M_{max} =$ _____kN-m

 $M_{max} =$ _____kN-m

 $M_{max} =$ _____kN-m

6. For the beam shown, the allowable compression bending stress is 60 MPa, and the allowable tension bending stress is 70 MPa. Determine the maximum value of M that can be applied as shown to the beam.

M = _____ kN-m

7. For the moment diagram and cross section shown, compute the maximum tension and compression bending stresses produced at any location along the beam span.

 $\sigma_{\text{max tension}} =$ _____ MPa

 $\sigma_{max compression} = ____ MPa$

8. A HSS10×4×1/2 standard steel shape is used to support the loads shown on the beam. The shape is oriented so that bending occurs about the strong axis. Determine the magnitude of the maximum bending stress in the beam. Note that the shear-force and bending-moment diagrams have been provided in kips and kip-ft.

Hollow Structural Sections or HSS Shapes

Designation	Depth d	Width b	Wall thickness (nom.) t	Weight per foot	Area A	I _x	S _x	r _x	Iy	Sy	ry
	in.	in.	in.	lb/ft	in. ²	in. ⁴	in. ³	in.	in.4	in. ³	in.
HSS12×8×1/2	12	8	0.5	62.3	17.2	333	55.6	4.41	178	44.4	3.21
×8×3/8	12	8	0.375	47.8	13.2	262	43.7	4.47	140	35.1	3.27
×6×1/2	12	6	0.5	55.5	15.3	271	45.2	4.21	91.1	30.4	2.44
×6×3/8	12	6	0.375	42.7	11.8	215	35.9	4.28	72.9	24.3	2.49
HSS10×6×1/2	10	6	0.5	48.7	13.5	171	34.3	3.57	76.8	25.6	2.39
×6×3/8	10	6	0.375	37.6	10.4	137	27.4	3.63	61.8	20.6	2.44
×4×1/2	10	4	0.5	41.9	11.6	129	25.8	3.34	29.5	14.7	1.59
×4×3/8	10	4	0.375	32.5	8.97	104	20.8	3.41	24.3	12.1	1.64
$HSS8 \times 4 \times 1/2$	8	4	0.5	35.1	9.74	71.8	17.9	2.71	23.6	11.8	1.56
$\times 4 \times 3/8$	8	4	0.375	27.4	7.58	58.7	14.7	2.78	19.6	9.80	1.61
$\times 4 \times 1/4$	8	4	0.25	19.0	5.24	42.5	10.6	2.85	14.4	7.21	1.66
$\times 4 \times 1/8$	8	4	0.125	9.85	2.70	22.9	5.73	2.92	7.90	3.95	1.71
$HSS6 \times 4 \times 3/8$	6	4	0.375	22.3	6.18	28.3	9.43	2.14	14.9	7.47	1.55
$\times 4 \times 1/4$	6	4	0.25	15.6	4.30	20.9	6.96	2.20	11.1	5.56	1.61
$\times 4 \times 1/8$	6	4	0.125	8.15	2.23	11.4	3.81	2.26	6.15	3.08	1.66
$\times 3 \times 3/8$	6	3	0.375	19.7	5.48	22.7	7.57	2.04	7.48	4.99	1.17
$\times 3 \times 1/4$	6	3	0.25	13.9	3.84	17.0	5.66	2.10	5.70	3.80	1.22
$\times 3 \times 1/8$	6	3	0.125	7.30	2.00	9.43	3.14	2.17	3.23	2.15	1.27

9. Circle the most economical WT beam in the following table if a section modulus $S_x \ge 8$ in.³ is required.

Designation	Area A	Depth d	Web thickness t _w	Flange width b _f	Flange thickness t _f	Centroid y	Ix	S _x	r _x	Iy	Sy	ry
	in. ²	in.	in.	in.	in.	in.	in.4	in. ³	in.	in. ⁴	in. ³	in.
WT12×47	13.8	12.2	0.515	9.07	0.875	2.99	186	20.3	3.67	54.5	12.0	1.98
WT12×38	11.2	12.0	0.440	8.99	0.680	3.00	151	16.9	3.68	41.3	9.18	1.92
WT12×34	10.0	11.9	0.415	8.97	0.585	3.06	137	15.6	3.70	35.2	7.85	1.87
WT12×27.5	8.10	11.8	0.395	7.01	0.505	3.50	117	14.1	3.80	14.5	4.15	1.34
WT10.5×34	10.0	10.6	0.430	8.27	0.685	2.59	103	12.9	3.20	32.4	7.83	1.80
WT10.5×31	9.13	10.5	0.400	8.24	0.615	2.58	93.8	11.9	3.21	28.7	6.97	1.77
WT10.5×25	7.36	10.4	0.380	6.53	0.535	2.93	80.3	10.7	3.30	12.5	3.82	1.30
WT10.5×22	6.49	10.3	0.350	6.50	0.450	2.98	71.1	9.68	3.31	10.3	3.18	1.26
WT9×27.5	8.10	9.06	0.390	7.53	0.630	2.16	59.5	8.63	2.71	22.5	5.97	1.67
WT9×25	7.33	9.00	0.355	7.50	0.570	2.12	53.5	7.79	2.70	20.0	5.35	1.65
WT9×20	5.88	8.95	0.315	6.02	0.525	2.29	44.8	6.73	2.76	9.55	3.17	1.27
WT9×17.5	5.15	8.85	0.300	6.00	0.425	2.39	40.1	6.21	2.79	7.67	2.56	1.22
WT8×28.5	8.39	8.22	0.430	7.12	0.715	1.94	48.7	7.77	2.41	21.6	6.06	1.60
WT8×25	7.37	8.13	0.380	7.07	0.630	1.89	42.3	6.78	2.40	18.6	5.26	1.59
WT8×20	5.89	8.01	0.305	7.00	0.505	1.81	33.1	5.35	2.37	14.4	4.12	1.56
WT8×15.5	4.56	7.94	0.275	5.53	0.440	2.02	27.5	4.64	2.45	6.2	2.24	1.17

Shapes Cut from Wide-Flange Sections or WT Shapes

10. Two $\frac{1}{4}$ in.×8 in. steel [E = 30,000 ksi] plates are securely attached to a pine [E = 2,000 ksi] timber to form a composite beam. Determine the maximum bending stress magnitude in the steel if a moment of 100 kip-ft is applied about the horizontal axis of the beam.

PL $\frac{1}{4} \times 8$ 16 in. 16 in. PL $\frac{1}{4} \times 8$

 $\sigma_{max steel} =$ _____ksi

11. The tee shape is used as a short post to support a load of P = 2,500 lb. The load P is applied at a distance of 5 in. from the surface of the flange. Determine the normal force and bending moment located at section *a*-*a*. Also determine the magnitude of the bending stress at point *K*. Note that the centroid location and moment of inertia are provided.

STATICS

Symbol	Meaning	Equation	Units
$\overline{x}, \overline{y}, \overline{z}$	centroid position	$\overline{y} = \Sigma \overline{y}_i A_i / \Sigma A_i$	in, m
I	moment of inertia	$I = \Sigma \big(I_{i} + d_{i}^2 A_{i} \big)$	in ^{4,} m ⁴
J	polar moment of inertia	$J_{\text{solid circular shaft}} = \pi d^4/32$ $J_{\text{hollow circular shaft}} = \pi (d_o^4 - d_i^4)/32$	in ^{4,} m ⁴
N	normal force		lb, N
V	shear force	$V = \int -w(x) dx$	lb, N
М	bending moment	M =∫ V(x) dx	in-lb, Nm
equil	ibrium	$\Sigma \mathbf{F} = 0$ $\Sigma \mathbf{M}_{(any point)} = 0$	lb, N in-lb, Nm

MECHANICS OF MATERIALS

Topic	Symbol	Meaning	Equation	Units
axial	σ, sigma	normal stress	$\begin{split} \sigma_{axial} &= N/A \\ \tau_{cutting} &= V/A \\ \sigma_{bearing} &= F_{b}/A_{b} \end{split}$	psi, Pa
	ϵ , epsilon	normal strain	$\begin{split} \epsilon_{\text{axial}} &= \Delta \text{L/L}_{\text{o}} = \delta \text{/L}_{\text{o}} \\ \epsilon_{\text{transverse}} &= \Delta \text{d/d} \end{split}$	in/in, m/m
	γ, gamma	shear strain	γ = change in angle, γ = $c\theta$	rad
	E	Young's modulus, modulus of elasticity	$\sigma=\text{E}\epsilon~(\text{one-dimensional only})$	psi, Pa
	G	shear modulus, modulus of rigidity	$G = \tau/\gamma = E / 2(1+\nu)$	psi, Pa
	v, nu	Poisson's ratio	$\nu = -\epsilon'/\epsilon$	
	δ , delta	deformation, elongation, deflection	$\delta = NI /EA + \alpha ATI$	in, m
	α , alpha	coefficient of thermal expansion (CTE)	$0 = NL_0/LA + u\Delta IL_0$	in/inF, m/mC
	F.S.	factor of safety	F.S. = actual strength / design strength	

Topic	Symbol	Meaning Equation				
	τ, tau	shear stress	τ _{torsio}	psi, Pa		
torsion	φ, phi	angle of twist	φ =	rad, degrees		
	θ , theta	angle of twist per unit length, rate of twist	θ =	$\theta = \phi / L$		
	Р	power		$r_2T_1 = r_1T_2$		
	ω, omega	angular speed, speed of rotation	Ρ=1ω	$r_1 \omega_1 = r_2 \omega_2$	rad/s	
	f	frequency	0 :	Hz = rev/s		
	K	stress concentration factor	τ _{max}	= KTc/J	psi, Pa	
	σ, sigma	normal stress	σ_{beam}	$\sigma_{\text{beam}} = -My/I$		
0	σ, sigma	composite beams, n = E _B /E _A	$\sigma_A = -My / I^T$	$\sigma_{\rm B}$ = -nMy / I ^T	psi, Pa	
flexure	τ, tau	shear stress	$ au_{beam} = VQ/Ib$ wh	psi, Pa		
	q	shear flow	$q = V_{beam}Q$			
	v or y	beam deflection	v = ∬ M(v = ∬ M(x) dx² / EI		
Тс	opic	Equ	ations	าร		
stress trans- formation		$\sigma_{u} = (\sigma_{x} + \sigma_{y})/2 + (\sigma_{x} - \sigma_{y})/2 \cos(2\theta) + \tau_{xy}\sin(2\theta)$ $\sigma_{v} = (\sigma_{x} + \sigma_{y})/2 - (\sigma_{x} - \sigma_{y})/2 \cos(2\theta) - \tau_{xy}\sin(2\theta)$ $\tau_{uv} = -(\sigma_{x} - \sigma_{y})/2 \sin(2\theta) + \tau_{xy}\cos(2\theta)$	principals and n tan($2\theta_p$) = $2\tau_{xy}$ / (c $\sigma_{1,2} = (\sigma_x + \sigma_y)/2 \pm sq$ $\tau_{max} = sqrt \{ [(\sigma_x - \sigma_y)$ $\sigma_{avg} = (\sigma_x + \sigma_y)$	psi, Pa		
strain trans- formation		$planar \ rotations$ $\varepsilon_{u} = (\varepsilon_{x} + \varepsilon_{y})/2 + (\varepsilon_{x} - \varepsilon_{y})/2 \cos(2\theta) + \gamma_{xy}/2 \sin(2\theta)$ $\varepsilon_{v} = (\varepsilon_{x} + \varepsilon_{y})/2 - (\varepsilon_{x} - \varepsilon_{y})/2 \cos(2\theta) - \gamma_{xy}/2 \sin(2\theta)$ $\gamma_{uv}/2 = -(\varepsilon_{x} - \varepsilon_{y})/2 \sin(2\theta) + \gamma_{xy}/2 \cos(2\theta)$ $\varepsilon_{z} = -v \ (\varepsilon_{x} + \varepsilon_{y}) / (1 - v)$	principals and n tan($2\theta_p$) = γ_{xy} / (ϵ $\epsilon_{1,2}$ = ($\epsilon_x + \epsilon_y$)/2 ± sqrt γ_{max} /2 = sqrt { [($\epsilon_{x} + \epsilon_{y})$	psi, Pa in/in, m/m		
Hooke's Iaw		1D strain to stress $\sigma = E\epsilon$ 2D strain to stress $\sigma_{x} = E(\epsilon_{x} + v\epsilon_{y}) / (1 - v^{2})$ $\sigma_{y} = E(\epsilon_{y} + v\epsilon_{x}) / (1 - v^{2})$ $\tau_{xy} = G\gamma_{xy} = E\gamma_{xy} / 2(1 + v)$	$2D \text{ stress}$ $\varepsilon_{x} = (\sigma)$ $\varepsilon_{y} = (\sigma)$ $\varepsilon_{z} = -v(\varepsilon_{x})$ $\gamma_{xy} = \tau_{xy}/G = 0$	psi, Pa in/in, m/m		
pres	ssure	$\sigma_{spherical} = pr/2t$ $\sigma_{cylindrical, hoop} = pr/t$ $\sigma_{cylindrical, axial} = pr/2t$	$\sigma_{radial,}$	psi, Pa		
fai the	lure ories	maximum principal stress theory σ _{1,2} < σ _{yp}	maximum she τ _{max} <	ear stress theory : 0.5 σ _{yp}	psi, Pa	