\qquad

1. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q ? (3 points)
\qquad Areas (1) and (5)
\qquad Areas (1) through (5)
\qquad Areas (2), (3) and (4)
\qquad Areas (1), (2), (4) and (5)

2. In calculating the shear flow associated with the two nails shown, which areas should be included in the calculation of Q ? (3 points)
\qquad Areas (2) through (6)
\qquad Areas (2), (3), (5) and (6)
\qquad Area (4)
\qquad Areas (3), (4) and (5)
3. What is the value of Q needed to determine the shear force acting on nail B ? (6 points)
\qquad $390,625 \mathrm{~mm}^{3}$
\qquad $1,140,625 \mathrm{~mm}^{3}$
\qquad $875,000 \mathrm{~mm}^{3}$
\qquad $750,000 \mathrm{~mm}^{3}$

4. What is the value of Q needed to determine the shear force acting on the two nails shown? (6 points)
\qquad $480,000 \mathrm{~mm}^{3}$
\qquad $3,200 \mathrm{~mm}^{3}$
\qquad $96,000 \mathrm{~mm}^{3}$
\qquad $144,000 \mathrm{~mm}^{3}$

5. If boards (1) and (2) were glued to board (3) instead of nailed, what would be the shear stress in the glue if $V=1,125 \mathrm{lb}$? (6 points)
\qquad 16.5 psi
\qquad 49.6 psi
\qquad 99.3 psi

\qquad 198.5 psi
6. The allowable load for each weld is $2.4 \mathrm{kip} / \mathrm{inch}$ in the longitudinal direction. What is the maximum allowable shear force V ? (8 points)
\qquad 10.5 kips
\qquad 12.8 kips
\qquad 20.9 kips
\qquad 25.6 kips

7. A 1.00 -inch-diameter solid steel shaft supports loads $P_{\mathrm{A}}=300 \mathrm{lb}$ and $P_{\mathrm{D}}=500$ lb. Assume $L_{1}=5 \mathrm{in}$., $L_{2}=16 \mathrm{in}$., and L_{3} $=8 \mathrm{in}$. Determine the values for V, Q, I, and b that would be used in the maximum horizontal shear stress anywhere in the shaft. (20 points)

$$
V=\ldots \mathrm{lb}
$$

$Q=$ \qquad in. ${ }^{3}$
$I=$ \qquad in. ${ }^{4}$
$b=$ \qquad in.
8. For the beam and loading shown, use the integration method to determine the equation of the elastic curve for segment $A B$ of the beam. Do NOT solve for the integration constants. (8 points)

9. List the boundary, continuity, and/or symmetry conditions that could be used to solve the integration constants in the previous problem. (6 points)
10. Determine the beam deflection at point H.

Assume that $E I=40,000 \mathrm{kN-m}{ }^{2}$ is constant for the beam. (6 points)

11. Determine the beam deflection at point H. Assume that $E I=40,000 \mathrm{kN}-\mathrm{m}^{2}$ is constant for the beam. (10 points)
$v_{\mathrm{H}}=$ \qquad mm

12. Determine the beam deflection at point H. Assume that $E I=40,000 \mathrm{kN}^{2} \mathrm{~m}^{2}$ is constant for the beam. (8 points)
$v_{\mathrm{H}}=$ \qquad mm

13. Determine the beam deflection at point C.

Assume that $E I=40,000 \mathrm{kN}-\mathrm{m}^{2}$ is constant for the beam. (10 points)
$v_{\mathrm{C}}=$ \qquad mm

TRIGONOMETRY

STATICS

Symbol	Meaning	Equation	Units
$\bar{x}, \bar{y}, \bar{z}$	centroid position	$\bar{y}=\Sigma \bar{y}_{i} A_{i} / \Sigma A_{i}$	in, m
I	moment of inertia	$\mathrm{I}=\Sigma\left(\mathrm{I}_{\mathrm{i}}+\mathrm{d}_{\mathrm{i}}^{2} \mathrm{~A}_{\mathrm{i}}\right)$	in ${ }^{4}$, m ${ }^{4}$
J	polar moment of inertia	$\begin{gathered} \mathrm{J}_{\text {solid circular shaft }}=\pi \mathrm{d}^{4} / 32 \\ \mathrm{~J}_{\text {hollow circular shaft }} \\ =\pi\left(\mathrm{d}_{0}^{4}-\mathrm{d}_{\mathrm{i}}^{4}\right) / 32 \end{gathered}$	in ${ }^{4}$, m ${ }^{4}$
N	normal force		lb, N
V	shear force	$V=\int-w(x) d x$	lb, N
M	bending moment	$M=\int V(x) d x$	in-lb, Nm
equilibrium		$\begin{gathered} \Sigma F=\mathbf{0} \\ \Sigma \mathbf{M}_{(\text {any point })}=0 \end{gathered}$	$\begin{gathered} \mathrm{lb}, \mathrm{~N} \\ \mathrm{in}-\mathrm{lb}, \mathrm{Nm} \end{gathered}$

SECOND MOMENTS OF PLANE AREAS		
Rectangular Area $A=b h$	$I_{x}=\frac{b h^{3}}{12}$	$I_{x^{\prime}}=\frac{b h^{3}}{3}$
h	$\begin{aligned} & I_{y}=\frac{h b^{3}}{12} \\ & I_{x y}=0 \end{aligned}$	$\begin{aligned} & I_{y^{\prime}}=\frac{h b^{3}}{3} \\ & I_{x^{\prime} y^{\prime}}=\frac{b^{2} h^{2}}{4} \end{aligned}$
Triangular Area $A=\frac{1}{2} b h$	$\begin{aligned} & I_{x}=\frac{b h^{3}}{36} \\ & I_{y}=\frac{h b^{3}}{36} \\ & I_{x y}=\frac{b^{2} h^{2}}{72} \end{aligned}$	$\begin{aligned} & I_{x^{\prime}}=\frac{b h^{3}}{12} \\ & I_{y^{\prime}}=\frac{h b^{3}}{4} \\ & I_{x^{\prime} y^{\prime}}=\frac{b^{2} h^{2}}{8} \end{aligned}$
Circular Area $A=\pi R^{2}$	$\begin{aligned} & I_{x}=\frac{\pi R^{4}}{4} \\ & I_{y}=\frac{\pi R^{4}}{4} \\ & I_{x y}=0 \end{aligned}$	$I_{x^{\prime}}=\frac{5 \pi R^{4}}{4}$
	$\begin{aligned} & I_{x}=\frac{\pi R^{4}}{8}-\frac{8 R^{4}}{9 \pi} \\ & I_{y}=\frac{\pi R^{4}}{8} \\ & I_{x y}=0 \end{aligned}$	$I_{x^{\prime}}=\frac{\pi R^{4}}{8}$ $I_{x^{\prime} y^{\prime}}=\frac{2 R^{4}}{3}$
	$I_{x}=\frac{\pi R^{4}}{16}-\frac{4 R^{4}}{9 \pi}$ $I_{x y}=\frac{(9 \pi-32) R^{4}}{72 \pi}$	$\begin{aligned} & I_{x^{\prime}}=\frac{\pi R^{4}}{16} \\ & I_{y^{\prime}}=\frac{\pi R^{4}}{16} \\ & I_{x^{\prime} y^{\prime}}=\frac{R^{4}}{8} \end{aligned}$

MECHANICS OF MATERIALS

Topic	Symbol	Meaning	Equation	Units
axial	σ, sigma	normal stress	$\begin{aligned} \sigma_{\text {axial }} & =\mathrm{N} / \mathrm{A} \\ \tau_{\text {cutting }} & =\mathrm{V} / \mathrm{A} \\ \sigma_{\text {bearing }} & =\mathrm{F}_{\mathrm{b}} / \mathrm{A}_{\mathrm{b}} \end{aligned}$	psi, Pa
	ε, epsilon	normal strain	$\begin{gathered} \varepsilon_{\text {axial }}=\Delta \mathrm{L} / \mathrm{L}_{\mathrm{o}}=\delta / \mathrm{L}_{\mathrm{o}} \\ \varepsilon_{\text {transverse }}=\Delta \mathrm{d} / \mathrm{d} \end{gathered}$	in/in, m/m
	γ, gamma	shear strain	$\gamma=$ change in angle, $\gamma=c \theta$	rad
	E	Young's modulus, modulus of elasticity	$\sigma=\mathrm{E} \boldsymbol{\varepsilon}$ (one-dimensional only)	psi, Pa
	G	shear modulus, modulus of rigidity	$\mathrm{G}=\tau / \gamma=\mathrm{E} / 2(1+v)$	psi, Pa
	v, nu	Poisson's ratio	$v=-\varepsilon^{\prime} / \varepsilon$	
	δ, delta	deformation, elongation, deflection	$N / E A+\alpha \Delta T$	in, m
	α, alpha	coefficient of thermal expansion (CTE)		in/inF, m/mC
	F.S.	factor of safety	F.S. = actual strength / design strength	

Topic	Symbol	Meaning	Equation		Units
torsion	τ, tau	shear stress	$\tau_{\text {torsion }}=\mathrm{Tc} / \mathrm{J}$		psi, Pa
	ϕ, phi	angle of twist	$\phi=\mathrm{TL} / \mathrm{GJ}$		rad, degrees
	θ, theta	angle of twist per unit length, rate of twist	$\theta=\phi / L$		rad/in, rad/m
	P	power	$\mathrm{P}=\mathrm{T} \omega$	$\begin{gathered} r_{2} T_{1}=r_{1} T_{2} \\ r_{1} \omega_{1}=r_{2} \omega_{2} \end{gathered}$	$\begin{gathered} \text { watts }=\mathrm{Nm} / \mathrm{s} \\ \mathrm{hp}=6600 \mathrm{in}-\mathrm{lb} / \mathrm{s} \end{gathered}$
	$\begin{gathered} \omega, \\ \text { omega } \end{gathered}$	angular speed, speed of rotation			rad/s
	f	frequency	$\omega=2 \pi \mathrm{f}$		$\mathrm{Hz}=\mathrm{rev} / \mathrm{s}$
	K	stress concentration factor	$\tau_{\text {max }}=\mathrm{KTc} / \mathrm{J}$		psi, Pa
flexure	σ, sigma	normal stress $\quad 3$	$\sigma_{\text {beam }}=-\mathrm{My} / \mathrm{l}$		psi, Pa
	σ, sigma	composite beams, $n=E_{B} / E_{A}$	$\sigma_{A}=-M y / I^{\top}$	$\sigma_{B}=-n M y / I^{\top}$	psi, Pa
	τ, tau	shear stress	$\tau_{\text {beam }}=\mathrm{VQ} / \mathrm{lb}$ where $\mathrm{Q}=\Sigma\left(\mathrm{y}_{\text {bar i }} \mathrm{A}_{\mathrm{i}}\right)$		psi, Pa
	q	shear flow	$\mathrm{q}=\mathrm{V}_{\text {beam }} \mathrm{Q} / \mathrm{I}=\mathrm{n} \mathrm{V}_{\text {fastener }} / \mathrm{s}$		
	v or y	beam deflection	$v=\iint M(x) d x^{2} / E l$		in, m
Topic		Equations			Units
stress trans- formation		planar rotations $\begin{gathered} \sigma_{\mathrm{u}}=\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right) / 2+\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right) / 2 \cos (2 \theta)+\tau_{\mathrm{xy}} \sin (2 \theta) \\ \sigma_{\mathrm{v}}=\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right) / 2-\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right) / 2 \cos (2 \theta)-\tau_{\mathrm{xy}} \sin (2 \theta) \\ \tau_{\mathrm{uv}}=-\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right) / 2 \sin (2 \theta)+\tau_{\mathrm{xy}} \cos (2 \theta) \end{gathered}$	principals and max in-plane shear$\begin{gathered} \tan \left(2 \theta_{\mathrm{p}}\right)=2 \tau_{\mathrm{xy}} /\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right), \theta_{\mathrm{s}}=\theta_{\mathrm{p}} \pm 45^{\circ} \\ \sigma_{1,2}=\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right) / 2 \pm \operatorname{sqrt}\left\{\left[\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right) / 2\right]^{2}+\tau_{\mathrm{xy}}{ }^{2}\right\} \\ \tau_{\max }=\operatorname{sqrt}\left\{\left[\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right) / 2\right]^{2}+\tau_{\mathrm{xy}}{ }^{2}\right\}=\left(\sigma_{1}-\sigma_{2}\right) / 2 \\ \sigma_{\mathrm{avg}}=\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right) / 2=\left(\sigma_{1}+\sigma_{2}\right) / 2 \end{gathered}$		psi, Pa
strain trans- formation		planar rotations $\begin{gathered} \varepsilon_{\mathrm{u}}=\left(\varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}\right) / 2+\left(\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{y}}\right) / 2 \cos (2 \theta)+\gamma_{\mathrm{xy}} / 2 \sin (2 \theta) \\ \varepsilon_{\mathrm{v}}=\left(\varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}\right) / 2-\left(\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{y}}\right) / 2 \cos (2 \theta)-\gamma_{\mathrm{xy}} / 2 \sin (2 \theta) \\ \gamma_{\mathrm{uv}} / 2=-\left(\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{y}}\right) / 2 \sin (2 \theta)+\gamma_{\mathrm{xy}} / 2 \cos (2 \theta) \\ \varepsilon_{\mathrm{z}}=-v\left(\varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}\right) /(1-v) \end{gathered}$	$\begin{gathered} \text { principals and max in-plane shear } \\ \tan \left(2 \theta_{\mathrm{p}}\right)=\gamma_{\mathrm{xy}} /\left(\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{y}}\right), \theta_{\mathrm{s}}=\theta_{\mathrm{p}} \pm 45^{\circ} \\ \varepsilon_{1,2}=\left(\varepsilon_{\mathrm{x}}+\varepsilon_{y}\right) / 2 \pm \operatorname{sqrt}\left\{\left[\left(\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{y}}\right) / 2\right]^{2}+\left(\gamma_{\mathrm{xy}} / 2\right)^{2}\right\} \\ \gamma_{\text {max }} / 2=\operatorname{sqrt}\left\{\left[\left(\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{y}}\right) / 2\right]^{2}+\left(\gamma_{\mathrm{xy}} / 2\right)^{2}\right\} \\ \varepsilon_{\text {avg }}=\left(\varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}\right) / 2 \end{gathered}$		psi, Pa in/in, m/m
Hooke's law		1D strain to stress $\sigma=E \varepsilon$ 2D strain to stress $\begin{gathered} \sigma_{x}=\mathrm{E}\left(\varepsilon_{\mathrm{x}}+v \varepsilon_{\mathrm{y}}\right) /\left(1-v^{2}\right) \\ \sigma_{\mathrm{y}}=\mathrm{E}\left(\varepsilon_{\mathrm{y}}+v \varepsilon_{\mathrm{x}}\right) /\left(1-v^{2}\right) \\ \tau_{\mathrm{xy}}=\mathrm{G} \gamma_{\mathrm{xy}}=\mathrm{E} \gamma_{\mathrm{xy}} / 2(1+v) \end{gathered}$	$2 D$ stress to strain$\begin{gathered} \varepsilon_{x}=\left(\sigma_{x}-v \sigma_{y}\right) / E \\ \varepsilon_{y}=\left(\sigma_{y}-v \sigma_{x}\right) / E \\ \varepsilon_{z}=-v\left(\varepsilon_{x}+\varepsilon_{y}\right) /(1-v) \\ \gamma_{x y}=\tau_{x y} / G=2(1+v) \tau_{x y} / E \end{gathered}$		psi, Pa in/in, m/m
pressure		$\begin{gathered} \sigma_{\text {spherical }}=\mathrm{pr} / 2 \mathrm{t} \\ \sigma_{\text {cylindrical, hoop }}=\mathrm{pr} / \mathrm{t} \\ \sigma_{\text {cylindrical, axial }}=\mathrm{pr} / 2 \mathrm{t} \end{gathered}$	$\begin{aligned} & \sigma_{\text {radial, outside }}=0 \\ & \sigma_{\text {radial, inside }}=-p \end{aligned}$		psi, Pa
failure theories		maximum principal stress theory $\sigma_{1,2}<\sigma_{y p}$	maximum τ_{m}	$\begin{aligned} & \text { tress theory } \\ & \sigma_{\mathrm{yp}} \end{aligned}$	psi, Pa

Cantilever Beams			
Beam	Slope	Deflection	Elastic Curve
	$\theta_{\text {max }}=-\frac{P L^{2}}{2 E I}$	$v_{\text {max }}=-\frac{P L^{3}}{3 E I}$	$v=-\frac{P x^{2}}{6 E I}(3 L-x)$
	$\theta_{\text {max }}=-\frac{M L}{E I}$	$v_{\text {max }}=-\frac{M L^{2}}{2 E I}$	$v=-\frac{M x^{2}}{2 E I}$
	$\theta_{\text {max }}=-\frac{w L^{3}}{6 E I}$	$v_{\text {max }}=-\frac{w L^{4}}{8 E I}$	$v=-\frac{w x^{2}}{24 E I}\left(6 L^{2}-4 L x+x^{2}\right)$
	$\theta_{\text {max }}=-\frac{w_{0} L^{3}}{24 E I}$	$v_{\text {max }}=-\frac{w_{0} L^{4}}{30 E I}$	$v=-\frac{w_{0} x^{2}}{120 L E I}\left(10 L^{3}-10 L^{2} x+5 L x^{2}-x^{3}\right)$

SIMPLY SUPPORTED BEAMS			
Beam	Slope	Deflection	Elastic Curve
	$\theta_{1}=-\theta_{2}=-\frac{P L^{2}}{16 E I}$	$v_{\max }=-\frac{P L^{3}}{48 E I}$	$\begin{aligned} & v=-\frac{P x}{48 E I}\left(3 L^{2}-4 x^{2}\right) \\ & \\ & \quad \text { for } 0 \leq x \leq L / 2 \end{aligned}$
	$\begin{aligned} & \theta_{1}=-\frac{P b\left(L^{2}-b^{2}\right)}{6 L E I} \\ & \theta_{2}=+\frac{P a\left(L^{2}-a^{2}\right)}{6 L E I} \end{aligned}$	$\left.v\right\|_{x=a}=-\frac{P b a}{6 L E I}\left(L^{2}-b^{2}-a^{2}\right)$	$\begin{array}{r} v=-\frac{P b x}{6 L E I}\left(L^{2}-b^{2}-x^{2}\right) \\ \text { for } 0 \leq x \leq a \end{array}$
	$\begin{aligned} & \theta_{1}=-\frac{M L}{3 E I} \\ & \theta_{2}=+\frac{M L}{6 E I} \end{aligned}$	$\begin{aligned} & v_{\max }=-\frac{M L^{2}}{9 \sqrt{3} E I} \\ & @ x=L\left(1-\frac{\sqrt{3}}{3}\right) \end{aligned}$	$v=-\frac{M x}{6 L E I}\left(2 L^{2}-3 L x+x^{2}\right)$
	$\theta_{1}=-\theta_{2}=-\frac{w L^{3}}{24 E I}$	$v_{\max }=-\frac{5 w L^{4}}{384 E I}$	$v=-\frac{w x}{24 E I}\left(L^{3}-2 L x^{2}+x^{3}\right)$
	$\begin{aligned} & \theta_{1}=-\frac{w a^{2}}{24 L E I}(2 L-a)^{2} \\ & \theta_{2}=+\frac{w a^{2}}{24 L E I}\left(2 L^{2}-a^{2}\right) \end{aligned}$	$\left.v\right\|_{x=a}=-\frac{w a^{3}}{24 L E I}\left(3 a^{2}-7 a L+4 L^{2}\right)$	$\begin{gathered} v=-\frac{w x}{24 L E I}\left(a^{4}-4 a^{3} L+4 a^{2} L^{2}+2 a^{2} x^{2}\right. \\ \left.-4 a L x^{2}+L x^{3}\right) \quad \text { for } 0 \leq x \leq a \\ v=-\frac{w a^{2}}{24 L E I}\left(-a^{2} L+4 L^{2} x+a^{2} x-6 L x^{2}+2 x^{3}\right) \\ \text { for } a \leq x \leq L \end{gathered}$
	$\begin{aligned} & \theta_{1}=-\frac{7 w_{0} L^{3}}{360 E I} \\ & \theta_{2}=+\frac{w_{0} L^{3}}{45 E I} \end{aligned}$	$v_{\max }=-0.00652 \frac{w_{0} L^{4}}{E I}$ @ $x=0.5193 L$	$v=-\frac{w_{0} x}{360 L E I}\left(7 L^{4}-10 L^{2} x^{2}+3 x^{4}\right)$

