\qquad

1. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points)

$\rightarrow \Sigma \mathrm{F}_{\mathrm{x}}=0=$ \qquad
$\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0=$ \qquad
$\Sigma \mathrm{M}_{\mathrm{A}}=0=$ \qquad (counter-clockwise as positive)
2. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points)

$\Sigma \mathrm{F}_{\mathrm{x}}=0=$ \qquad
$\Sigma \mathrm{F}_{\mathrm{y}}=0=$ \qquad
$\Sigma \mathrm{M}_{\mathrm{A}}=0=$
(counter-clockwise as positive)
3. For the beam and loading shown, derive an expression for the reaction at support A. Assume that EI is constant for the beam. (12 points)
$A_{y}=$ \qquad

4. A timber $[E=1,800 \mathrm{ksi}]$ beam is loaded and supported as shown. The cross section of the timber beam is 4 in . wide and 8 in . deep. The beam is supported at B by a 0.5 -inch-diameter steel $[E=30,000 \mathrm{ksi}]$ rod, which has no load before the distributed load is applied to the beam. After a distributed load of $900 \mathrm{lb} / \mathrm{ft}$ is applied to the beam, determine the force carried by the steel rod. (12 points)
$B=$ \qquad kips

5. What is the correct value of the normal stress shown on the stress element? (3 points)
\qquad -40
\qquad -20
\qquad $+40$
\qquad

6. What is the correct value of the shear stress shown on the stress element in the previous problem? (3 points)
\qquad -40
\qquad -20
\qquad $+40$
\qquad $+20$
7. The stresses shown act at a point in a stressed body. Determine the normal and shear stresses at this point on the inclined plane shown. Show these on an appropriate sketch. (12 points)

8. Consider a point in a structural member that is subjected to plane stress. Normal and shear stresses acting on horizontal and vertical planes at the point are shown. Determine the principal stresses acting at the point. Show these stresses on an appropriate sketch. (12 points)

9. Mohr's circle is shown for a point in a physical object that is subjected to plane stress. Determine the following values. (16 points)
$\sigma_{\mathrm{x}}=$ \qquad ksi
$\sigma_{\mathrm{y}}=$ \qquad ksi
$\tau_{\mathrm{xy}}=$ \qquad ksi
$\theta_{\mathrm{p}}=$ \qquad deg
$\sigma_{1}=$ \qquad ksi
$\sigma_{2}=$ \qquad ksi
$\tau_{\text {in-plane max }}=$ \qquad ksi

$\tau_{\text {absolute max }}=$ \qquad ksi
10. Sketch Mohr's circle for the following state of stress. (4 points)

11. Determine the following values from the Mohr's circle in the previous problem. (10 points)
$\sigma_{\text {center }}=$ \qquad MPa
radius $=$ \qquad MPa
$\sigma_{1}=$ \qquad MPa
$\sigma_{2}=$ \qquad MPa
$\tau_{\text {in-plane } \max }=$ \qquad MPa

TRIGONOMETRY

STATICS

Symbol	Meaning	Equation	Units
$\bar{x}, \bar{y}, \bar{z}$	centroid position	$\bar{y}=\Sigma \bar{y}_{i} A_{i} / \Sigma A_{i}$	in, m
I	moment of inertia	$\mathrm{I}=\Sigma\left(\mathrm{I}_{\mathrm{i}}+\mathrm{d}_{\mathrm{i}}^{2} \mathrm{~A}_{\mathrm{i}}\right)$	in ${ }^{4}$, m ${ }^{4}$
J	polar moment of inertia	$\begin{gathered} \mathrm{J}_{\text {solid circular shaft }}=\pi \mathrm{d}^{4} / 32 \\ \mathrm{~J}_{\text {hollow circular shaft }} \\ =\pi\left(\mathrm{d}_{0}^{4}-\mathrm{d}_{\mathrm{i}}^{4}\right) / 32 \end{gathered}$	in ${ }^{4}$, m ${ }^{4}$
N	normal force		lb, N
V	shear force	$V=\int-w(x) d x$	lb, N
M	bending moment	$M=\int V(x) d x$	in-lb, Nm
equilibrium		$\begin{gathered} \Sigma F=\mathbf{0} \\ \Sigma \mathbf{M}_{(\text {any point })}=0 \end{gathered}$	$\begin{gathered} \mathrm{lb}, \mathrm{~N} \\ \mathrm{in}-\mathrm{lb}, \mathrm{Nm} \end{gathered}$

SECOND MOMENTS OF PLANE AREAS		
Rectangular Area $A=b h$	$I_{x}=\frac{b h^{3}}{12}$	$I_{x^{\prime}}=\frac{b h^{3}}{3}$
h	$\begin{aligned} & I_{y}=\frac{h b^{3}}{12} \\ & I_{x y}=0 \end{aligned}$	$\begin{aligned} & I_{y^{\prime}}=\frac{h b^{3}}{3} \\ & I_{x^{\prime} y^{\prime}}=\frac{b^{2} h^{2}}{4} \end{aligned}$
Triangular Area $A=\frac{1}{2} b h$	$\begin{aligned} & I_{x}=\frac{b h^{3}}{36} \\ & I_{y}=\frac{h b^{3}}{36} \\ & I_{x y}=\frac{b^{2} h^{2}}{72} \end{aligned}$	$\begin{aligned} & I_{x^{\prime}}=\frac{b h^{3}}{12} \\ & I_{y^{\prime}}=\frac{h b^{3}}{4} \\ & I_{x^{\prime} y^{\prime}}=\frac{b^{2} h^{2}}{8} \end{aligned}$
Circular Area $A=\pi R^{2}$	$\begin{aligned} & I_{x}=\frac{\pi R^{4}}{4} \\ & I_{y}=\frac{\pi R^{4}}{4} \\ & I_{x y}=0 \end{aligned}$	$I_{x^{\prime}}=\frac{5 \pi R^{4}}{4}$
	$\begin{aligned} & I_{x}=\frac{\pi R^{4}}{8}-\frac{8 R^{4}}{9 \pi} \\ & I_{y}=\frac{\pi R^{4}}{8} \\ & I_{x y}=0 \end{aligned}$	$I_{x^{\prime}}=\frac{\pi R^{4}}{8}$ $I_{x^{\prime} y^{\prime}}=\frac{2 R^{4}}{3}$
	$I_{x}=\frac{\pi R^{4}}{16}-\frac{4 R^{4}}{9 \pi}$ $I_{x y}=\frac{(9 \pi-32) R^{4}}{72 \pi}$	$\begin{aligned} & I_{x^{\prime}}=\frac{\pi R^{4}}{16} \\ & I_{y^{\prime}}=\frac{\pi R^{4}}{16} \\ & I_{x^{\prime} y^{\prime}}=\frac{R^{4}}{8} \end{aligned}$

MECHANICS OF MATERIALS

Topic	Symbol	Meaning	Equation	Units
axial	σ, sigma	normal stress	$\begin{aligned} \sigma_{\text {axial }} & =\mathrm{N} / \mathrm{A} \\ \tau_{\text {cutting }} & =\mathrm{V} / \mathrm{A} \\ \sigma_{\text {bearing }} & =\mathrm{F}_{\mathrm{b}} / \mathrm{A}_{\mathrm{b}} \end{aligned}$	psi, Pa
	ε, epsilon	normal strain	$\begin{gathered} \varepsilon_{\text {axial }}=\Delta \mathrm{L} / \mathrm{L}_{\mathrm{o}}=\delta / \mathrm{L}_{\mathrm{o}} \\ \varepsilon_{\text {transverse }}=\Delta \mathrm{d} / \mathrm{d} \end{gathered}$	in/in, m/m
	γ, gamma	shear strain	$\gamma=$ change in angle, $\gamma=c \theta$	rad
	E	Young's modulus, modulus of elasticity	$\sigma=\mathrm{E} \boldsymbol{\varepsilon}$ (one-dimensional only)	psi, Pa
	G	shear modulus, modulus of rigidity	$\mathrm{G}=\tau / \gamma=\mathrm{E} / 2(1+v)$	psi, Pa
	v, nu	Poisson's ratio	$v=-\varepsilon^{\prime} / \varepsilon$	
	δ, delta	deformation, elongation, deflection	$N / E A+\alpha \Delta T$	in, m
	α, alpha	coefficient of thermal expansion (CTE)		in/inF, m/mC
	F.S.	factor of safety	F.S. = actual strength / design strength	

Topic	Symbol	Meaning	Equation		Units
torsion	τ, tau	shear stress	$\tau_{\text {torsion }}=\mathrm{Tc} / \mathrm{J}$		psi, Pa
	ϕ, phi	angle of twist	$\phi=\mathrm{TL} / \mathrm{GJ}$		rad, degrees
	θ, theta	angle of twist per unit length, rate of twist	$\theta=\phi / L$		rad/in, rad/m
	P	power	$\mathrm{P}=\mathrm{T} \omega$	$\begin{gathered} r_{2} T_{1}=r_{1} T_{2} \\ r_{1} \omega_{1}=r_{2} \omega_{2} \end{gathered}$	$\begin{gathered} \text { watts }=\mathrm{Nm} / \mathrm{s} \\ \mathrm{hp}=6600 \mathrm{in}-\mathrm{lb} / \mathrm{s} \end{gathered}$
	$\begin{gathered} \omega, \\ \text { omega } \end{gathered}$	angular speed, speed of rotation			rad/s
	f	frequency	$\omega=2 \pi \mathrm{f}$		$\mathrm{Hz}=\mathrm{rev} / \mathrm{s}$
	K	stress concentration factor	$\tau_{\text {max }}=\mathrm{KTc} / \mathrm{J}$		psi, Pa
flexure	σ, sigma	normal stress $\quad 3$	$\sigma_{\text {beam }}=-\mathrm{My} / \mathrm{l}$		psi, Pa
	σ, sigma	composite beams, $n=E_{B} / E_{A}$	$\sigma_{A}=-M y / I^{\top}$	$\sigma_{B}=-n M y / I^{\top}$	psi, Pa
	τ, tau	shear stress	$\tau_{\text {beam }}=\mathrm{VQ} / \mathrm{lb}$ where $\mathrm{Q}=\Sigma\left(\mathrm{y}_{\text {bar i }} \mathrm{A}_{\mathrm{i}}\right)$		psi, Pa
	q	shear flow	$\mathrm{q}=\mathrm{V}_{\text {beam }} \mathrm{Q} / \mathrm{I}=\mathrm{n} \mathrm{V}_{\text {fastener }} / \mathrm{s}$		
	v or y	beam deflection	$v=\iint M(x) d x^{2} / E l$		in, m
Topic		Equations			Units
stress trans- formation		planar rotations $\begin{gathered} \sigma_{\mathrm{u}}=\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right) / 2+\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right) / 2 \cos (2 \theta)+\tau_{\mathrm{xy}} \sin (2 \theta) \\ \sigma_{\mathrm{v}}=\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right) / 2-\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right) / 2 \cos (2 \theta)-\tau_{\mathrm{xy}} \sin (2 \theta) \\ \tau_{\mathrm{uv}}=-\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right) / 2 \sin (2 \theta)+\tau_{\mathrm{xy}} \cos (2 \theta) \end{gathered}$	principals and max in-plane shear$\begin{gathered} \tan \left(2 \theta_{\mathrm{p}}\right)=2 \tau_{\mathrm{xy}} /\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right), \theta_{\mathrm{s}}=\theta_{\mathrm{p}} \pm 45^{\circ} \\ \sigma_{1,2}=\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right) / 2 \pm \operatorname{sqrt}\left\{\left[\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right) / 2\right]^{2}+\tau_{\mathrm{xy}}{ }^{2}\right\} \\ \tau_{\max }=\operatorname{sqrt}\left\{\left[\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right) / 2\right]^{2}+\tau_{\mathrm{xy}}{ }^{2}\right\}=\left(\sigma_{1}-\sigma_{2}\right) / 2 \\ \sigma_{\mathrm{avg}}=\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right) / 2=\left(\sigma_{1}+\sigma_{2}\right) / 2 \end{gathered}$		psi, Pa
strain trans- formation		planar rotations $\begin{gathered} \varepsilon_{\mathrm{u}}=\left(\varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}\right) / 2+\left(\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{y}}\right) / 2 \cos (2 \theta)+\gamma_{\mathrm{xy}} / 2 \sin (2 \theta) \\ \varepsilon_{\mathrm{v}}=\left(\varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}\right) / 2-\left(\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{y}}\right) / 2 \cos (2 \theta)-\gamma_{\mathrm{xy}} / 2 \sin (2 \theta) \\ \gamma_{\mathrm{uv}} / 2=-\left(\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{y}}\right) / 2 \sin (2 \theta)+\gamma_{\mathrm{xy}} / 2 \cos (2 \theta) \\ \varepsilon_{\mathrm{z}}=-v\left(\varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}\right) /(1-v) \end{gathered}$	$\begin{gathered} \text { principals and max in-plane shear } \\ \tan \left(2 \theta_{\mathrm{p}}\right)=\gamma_{\mathrm{xy}} /\left(\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{y}}\right), \theta_{\mathrm{s}}=\theta_{\mathrm{p}} \pm 45^{\circ} \\ \varepsilon_{1,2}=\left(\varepsilon_{\mathrm{x}}+\varepsilon_{y}\right) / 2 \pm \operatorname{sqrt}\left\{\left[\left(\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{y}}\right) / 2\right]^{2}+\left(\gamma_{\mathrm{xy}} / 2\right)^{2}\right\} \\ \gamma_{\text {max }} / 2=\operatorname{sqrt}\left\{\left[\left(\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{y}}\right) / 2\right]^{2}+\left(\gamma_{\mathrm{xy}} / 2\right)^{2}\right\} \\ \varepsilon_{\text {avg }}=\left(\varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}\right) / 2 \end{gathered}$		psi, Pa in/in, m/m
Hooke's law		1D strain to stress $\sigma=E \varepsilon$ 2D strain to stress $\begin{gathered} \sigma_{x}=\mathrm{E}\left(\varepsilon_{\mathrm{x}}+v \varepsilon_{\mathrm{y}}\right) /\left(1-v^{2}\right) \\ \sigma_{\mathrm{y}}=\mathrm{E}\left(\varepsilon_{\mathrm{y}}+v \varepsilon_{\mathrm{x}}\right) /\left(1-v^{2}\right) \\ \tau_{\mathrm{xy}}=\mathrm{G} \gamma_{\mathrm{xy}}=\mathrm{E} \gamma_{\mathrm{xy}} / 2(1+v) \end{gathered}$	2D stress to strain$\begin{gathered} \varepsilon_{x}=\left(\sigma_{x}-v \sigma_{y}\right) / E \\ \varepsilon_{y}=\left(\sigma_{y}-v \sigma_{x}\right) / E \\ \varepsilon_{z}=-v\left(\varepsilon_{x}+\varepsilon_{y}\right) /(1-v) \\ \gamma_{x y}=\tau_{x y} / G=2(1+v) \tau_{x y} / E \end{gathered}$		psi, Pa in/in, m/m
pressure		$\begin{gathered} \sigma_{\text {spherical }}=\mathrm{pr} / 2 \mathrm{t} \\ \sigma_{\text {cylindrical, hoop }}=\mathrm{pr} / \mathrm{t} \\ \sigma_{\text {cylindrical, axial }}=\mathrm{pr} / 2 \mathrm{t} \end{gathered}$	$\begin{aligned} & \sigma_{\text {radial, outside }}=0 \\ & \sigma_{\text {radial, inside }}=-p \end{aligned}$		psi, Pa
failure theories		maximum principal stress theory $\sigma_{1,2}<\sigma_{y p}$	maximum τ_{m}	$\begin{aligned} & \text { tress theory } \\ & \sigma_{\mathrm{yp}} \end{aligned}$	psi, Pa

Cantilever Beams			
Beam	Slope	Deflection	Elastic Curve
	$\theta_{\text {max }}=-\frac{P L^{2}}{2 E I}$	$v_{\text {max }}=-\frac{P L^{3}}{3 E I}$	$v=-\frac{P x^{2}}{6 E I}(3 L-x)$
	$\theta_{\text {max }}=-\frac{M L}{E I}$	$v_{\text {max }}=-\frac{M L^{2}}{2 E I}$	$v=-\frac{M x^{2}}{2 E I}$
	$\theta_{\text {max }}=-\frac{w L^{3}}{6 E I}$	$v_{\text {max }}=-\frac{w L^{4}}{8 E I}$	$v=-\frac{w x^{2}}{24 E I}\left(6 L^{2}-4 L x+x^{2}\right)$
	$\theta_{\text {max }}=-\frac{w_{0} L^{3}}{24 E I}$	$v_{\text {max }}=-\frac{w_{0} L^{4}}{30 E I}$	$v=-\frac{w_{0} x^{2}}{120 L E I}\left(10 L^{3}-10 L^{2} x+5 L x^{2}-x^{3}\right)$

SIMPLY SUPPORTED BEAMS			
Beam	Slope	Deflection	Elastic Curve
	$\theta_{1}=-\theta_{2}=-\frac{P L^{2}}{16 E I}$	$v_{\max }=-\frac{P L^{3}}{48 E I}$	$\begin{aligned} & v=-\frac{P x}{48 E I}\left(3 L^{2}-4 x^{2}\right) \\ & \\ & \quad \text { for } 0 \leq x \leq L / 2 \end{aligned}$
	$\begin{aligned} & \theta_{1}=-\frac{P b\left(L^{2}-b^{2}\right)}{6 L E I} \\ & \theta_{2}=+\frac{P a\left(L^{2}-a^{2}\right)}{6 L E I} \end{aligned}$	$\left.v\right\|_{x=a}=-\frac{P b a}{6 L E I}\left(L^{2}-b^{2}-a^{2}\right)$	$\begin{array}{r} v=-\frac{P b x}{6 L E I}\left(L^{2}-b^{2}-x^{2}\right) \\ \text { for } 0 \leq x \leq a \end{array}$
	$\begin{aligned} & \theta_{1}=-\frac{M L}{3 E I} \\ & \theta_{2}=+\frac{M L}{6 E I} \end{aligned}$	$\begin{aligned} & v_{\max }=-\frac{M L^{2}}{9 \sqrt{3} E I} \\ & @ x=L\left(1-\frac{\sqrt{3}}{3}\right) \end{aligned}$	$v=-\frac{M x}{6 L E I}\left(2 L^{2}-3 L x+x^{2}\right)$
	$\theta_{1}=-\theta_{2}=-\frac{w L^{3}}{24 E I}$	$v_{\max }=-\frac{5 w L^{4}}{384 E I}$	$v=-\frac{w x}{24 E I}\left(L^{3}-2 L x^{2}+x^{3}\right)$
	$\begin{aligned} & \theta_{1}=-\frac{w a^{2}}{24 L E I}(2 L-a)^{2} \\ & \theta_{2}=+\frac{w a^{2}}{24 L E I}\left(2 L^{2}-a^{2}\right) \end{aligned}$	$\left.v\right\|_{x=a}=-\frac{w a^{3}}{24 L E I}\left(3 a^{2}-7 a L+4 L^{2}\right)$	$\begin{gathered} v=-\frac{w x}{24 L E I}\left(a^{4}-4 a^{3} L+4 a^{2} L^{2}+2 a^{2} x^{2}\right. \\ \left.-4 a L x^{2}+L x^{3}\right) \quad \text { for } 0 \leq x \leq a \\ v=-\frac{w a^{2}}{24 L E I}\left(-a^{2} L+4 L^{2} x+a^{2} x-6 L x^{2}+2 x^{3}\right) \\ \text { for } a \leq x \leq L \end{gathered}$
	$\begin{aligned} & \theta_{1}=-\frac{7 w_{0} L^{3}}{360 E I} \\ & \theta_{2}=+\frac{w_{0} L^{3}}{45 E I} \end{aligned}$	$v_{\max }=-0.00652 \frac{w_{0} L^{4}}{E I}$ @ $x=0.5193 L$	$v=-\frac{w_{0} x}{360 L E I}\left(7 L^{4}-10 L^{2} x^{2}+3 x^{4}\right)$

