\qquad

1. The strain components $\varepsilon_{x}=946 \mu \varepsilon, \varepsilon_{y}=-294 \mu \varepsilon$ and $\gamma_{\mathrm{xy}}=-362 \mu \varepsilon$ are given for a point in a body subjected to plane strain. Determine the strain components ε_{n}, ε_{t}, and γ_{nt} at the point if the $\mathrm{n}-\mathrm{t}$ axes are rotated with respect to the $x-y$ axes by the amount and in the direction indicated by the angle $\theta=12^{\circ}$. (9 points)

$\varepsilon_{\mathrm{n}}=$ \qquad $\mu \varepsilon$
$\varepsilon_{\mathrm{t}}=$ \qquad $\mu \varepsilon$
$\gamma_{\mathrm{nt}}=$ \qquad $\mu \mathrm{rad}$

Sketch the deformed shape of the element. (3 points)
2. The strain components $\varepsilon_{x}=-800 \mu \varepsilon, \varepsilon_{\mathrm{y}}=400 \mu \varepsilon$ and $\gamma_{\mathrm{xy}}=-1350 \mu \varepsilon$ are given for a point in a body subjected to plane strain. Determine θ_{p} and the normal and shear strains at the θ_{p} orientation (i.e. the "principals"). (12 points)
$\theta_{\mathrm{p}}=$ \qquad deg
$\varepsilon_{\mathrm{n}}=$ \qquad $\mu \varepsilon$
$\varepsilon_{\mathrm{t}}=$ \qquad $\mu \varepsilon$
$\gamma_{\mathrm{nt}}=$ \qquad $\mu \mathrm{rad}$

Determine θ_{s} and the normal and shear strains at the θ_{s} orientation (i.e. the "average normal strain" and "in-plane maximum shear strain"). (12 points)
$\theta_{\mathrm{s}}=$ \qquad deg
$\varepsilon_{\mathrm{n}}=$ \qquad $\mu \varepsilon$
$\varepsilon_{\mathrm{t}}=$ \qquad $\mu \varepsilon$
$\gamma_{\mathrm{nt}}=$ \qquad $\mu \mathrm{rad}$

Show the angle θ_{p}, the principal strain deformations, and the maximum in-plane shear strain distortion on a sketch. (4 points)
3. The strain components $\varepsilon_{x}=-200 \mu \varepsilon, \varepsilon_{y}=-700 \mu \varepsilon$ and $\gamma_{x y}=600 \mu \varepsilon$ are given for a point in a body subjected to plane strain. Draw Mohr's circle. (5 points)

Using the circle, determine the principal strains, the maximum in-plane shear strain, and the absolute maximum shear strain at the point. (18 points)
$\varepsilon_{\text {center }}=$ \qquad $\mu \varepsilon$
radius $=$ \qquad $\mu \varepsilon$
$\varepsilon_{1}=$ \qquad $\mu \varepsilon$
$\varepsilon_{2}=$ \qquad $\mu \varepsilon$
$\gamma_{\text {in-plane max }}=$ \qquad $\mu \mathrm{rad}$
$\gamma_{\mathrm{absolute} \text { max }}=$ \qquad $\mu \mathrm{rad}$
4. The strain rosette shown in the figures was used to obtain normal strain data at a point on the free surface of a machine part. Determine the strain components $\varepsilon_{x}, \varepsilon_{y}$ at the point. To save time, γ_{xy} is not needed. (15 points)
$\varepsilon_{\mathrm{a}}=-600 \mu \varepsilon$
$\varepsilon_{\mathrm{b}}=250 \mu \varepsilon$
$\varepsilon_{\mathrm{c}}=800 \mu \varepsilon$

$\varepsilon_{\mathrm{x}}=$ \qquad $\mu \varepsilon$
$\varepsilon_{y}=$ \qquad $\mu \varepsilon$
5. A strain gage is used to monitor the strain in a spherical steel tank ($\mathrm{E}=$ $210 \mathrm{GPa} ; \mathrm{v}=0.32$), which contains a fluid under pressure. The tank has an inside diameter of 2.50 m and a wall thickness of 100 mm . Determine the internal pressure in the tank when the strain gage reads $120 \mu \varepsilon$. (10 points)
$\mathrm{p}=$ \qquad MPa

6. A closed cylindrical vessel contains a fluid at a pressure of 640 psi. The cylinder, which has an outside diameter of 72 in. and a wall thickness of 1.000 in., is fabricated from stainless steel [$\mathrm{E}=28,000 \mathrm{ksi} ; v=0.32$]. Determine the axial and hoop stresses and principal strains. (12 points)
$\sigma_{\text {axial }}=$ \qquad psi

$\sigma_{\text {hoop }}=$ \qquad psi
$\varepsilon_{1}=$ \qquad $\mu \varepsilon$
$\varepsilon_{2}=$ \qquad $\mu \varepsilon$

TRIGONOMETRY

STATICS

Symbol	Meaning	Equation	Units
$\bar{x}, \bar{y}, \bar{z}$	centroid position	$\bar{y}=\Sigma \bar{y}_{i} A_{i} / \Sigma A_{i}$	in, m
I	moment of inertia	$\mathrm{I}=\Sigma\left(\mathrm{I}_{\mathrm{i}}+\mathrm{d}_{\mathrm{i}}^{2} \mathrm{~A}_{\mathrm{i}}\right)$	in ${ }^{4}$, m ${ }^{4}$
J	polar moment of inertia	$\begin{gathered} \mathrm{J}_{\text {solid circular shaft }}=\pi \mathrm{d}^{4} / 32 \\ \mathrm{~J}_{\text {hollow circular shaft }} \\ =\pi\left(\mathrm{d}_{0}^{4}-\mathrm{d}_{\mathrm{i}}^{4}\right) / 32 \end{gathered}$	in ${ }^{4}$, m ${ }^{4}$
N	normal force		lb, N
V	shear force	$V=\int-w(x) d x$	lb, N
M	bending moment	$M=\int V(x) d x$	in-lb, Nm
equilibrium		$\begin{gathered} \Sigma F=\mathbf{0} \\ \Sigma \mathbf{M}_{(\text {any point })}=0 \end{gathered}$	$\begin{gathered} \mathrm{lb}, \mathrm{~N} \\ \mathrm{in}-\mathrm{lb}, \mathrm{Nm} \end{gathered}$

SECOND MOMENTS OF PLANE AREAS		
Rectangular Area $A=b h$	$I_{x}=\frac{b h^{3}}{12}$	$I_{x^{\prime}}=\frac{b h^{3}}{3}$
h	$\begin{aligned} & I_{y}=\frac{h b^{3}}{12} \\ & I_{x y}=0 \end{aligned}$	$\begin{aligned} & I_{y^{\prime}}=\frac{h b^{3}}{3} \\ & I_{x^{\prime} y^{\prime}}=\frac{b^{2} h^{2}}{4} \end{aligned}$
Triangular Area $A=\frac{1}{2} b h$	$\begin{aligned} & I_{x}=\frac{b h^{3}}{36} \\ & I_{y}=\frac{h b^{3}}{36} \\ & I_{x y}=\frac{b^{2} h^{2}}{72} \end{aligned}$	$\begin{aligned} & I_{x^{\prime}}=\frac{b h^{3}}{12} \\ & I_{y^{\prime}}=\frac{h b^{3}}{4} \\ & I_{x^{\prime} y^{\prime}}=\frac{b^{2} h^{2}}{8} \end{aligned}$
Circular Area $A=\pi R^{2}$	$\begin{aligned} & I_{x}=\frac{\pi R^{4}}{4} \\ & I_{y}=\frac{\pi R^{4}}{4} \\ & I_{x y}=0 \end{aligned}$	$I_{x^{\prime}}=\frac{5 \pi R^{4}}{4}$
	$\begin{aligned} & I_{x}=\frac{\pi R^{4}}{8}-\frac{8 R^{4}}{9 \pi} \\ & I_{y}=\frac{\pi R^{4}}{8} \\ & I_{x y}=0 \end{aligned}$	$I_{x^{\prime}}=\frac{\pi R^{4}}{8}$ $I_{x^{\prime} y^{\prime}}=\frac{2 R^{4}}{3}$
	$I_{x}=\frac{\pi R^{4}}{16}-\frac{4 R^{4}}{9 \pi}$ $I_{x y}=\frac{(9 \pi-32) R^{4}}{72 \pi}$	$\begin{aligned} & I_{x^{\prime}}=\frac{\pi R^{4}}{16} \\ & I_{y^{\prime}}=\frac{\pi R^{4}}{16} \\ & I_{x^{\prime} y^{\prime}}=\frac{R^{4}}{8} \end{aligned}$

MECHANICS OF MATERIALS

Topic	Symbol	Meaning	Equation	Units
axial	σ, sigma	normal stress	$\begin{aligned} \sigma_{\text {axial }} & =\mathrm{N} / \mathrm{A} \\ \tau_{\text {cutting }} & =\mathrm{V} / \mathrm{A} \\ \sigma_{\text {bearing }} & =\mathrm{F}_{\mathrm{b}} / \mathrm{A}_{\mathrm{b}} \end{aligned}$	psi, Pa
	ε, epsilon	normal strain	$\begin{gathered} \varepsilon_{\text {axial }}=\Delta \mathrm{L} / \mathrm{L}_{\mathrm{o}}=\delta / \mathrm{L}_{\mathrm{o}} \\ \varepsilon_{\text {transverse }}=\Delta \mathrm{d} / \mathrm{d} \end{gathered}$	in/in, m/m
	γ, gamma	shear strain	$\gamma=$ change in angle, $\gamma=c \theta$	rad
	E	Young's modulus, modulus of elasticity	$\sigma=\mathrm{E} \boldsymbol{\varepsilon}$ (one-dimensional only)	psi, Pa
	G	shear modulus, modulus of rigidity	$\mathrm{G}=\tau / \gamma=\mathrm{E} / 2(1+v)$	psi, Pa
	v, nu	Poisson's ratio	$v=-\varepsilon^{\prime} / \varepsilon$	
	δ, delta	deformation, elongation, deflection	$N / E A+\alpha \Delta T$	in, m
	α, alpha	coefficient of thermal expansion (CTE)		in/inF, m/mC
	F.S.	factor of safety	F.S. = actual strength / design strength	

Topic	Symbol	Meaning	Equation		Units
torsion	τ, tau	shear stress	$\tau_{\text {torsion }}=\mathrm{Tc} / \mathrm{J}$		psi, Pa
	ϕ, phi	angle of twist	$\phi=\mathrm{TL} / \mathrm{GJ}$		rad, degrees
	θ, theta	angle of twist per unit length, rate of twist	$\theta=\phi / L$		rad/in, rad/m
	P	power	$\mathrm{P}=\mathrm{T} \omega$	$\begin{gathered} r_{2} T_{1}=r_{1} T_{2} \\ r_{1} \omega_{1}=r_{2} \omega_{2} \end{gathered}$	$\begin{gathered} \text { watts }=\mathrm{Nm} / \mathrm{s} \\ \mathrm{hp}=6600 \mathrm{in}-\mathrm{lb} / \mathrm{s} \end{gathered}$
	$\begin{gathered} \omega, \\ \text { omega } \end{gathered}$	angular speed, speed of rotation			rad/s
	f	frequency	$\omega=2 \pi \mathrm{f}$		$\mathrm{Hz}=\mathrm{rev} / \mathrm{s}$
	K	stress concentration factor	$\tau_{\text {max }}=\mathrm{KTc} / \mathrm{J}$		psi, Pa
flexure	σ, sigma	normal stress $\quad 3$	$\sigma_{\text {beam }}=-\mathrm{My} / \mathrm{l}$		psi, Pa
	σ, sigma	composite beams, $n=E_{B} / E_{A}$	$\sigma_{A}=-M y / I^{\top}$	$\sigma_{B}=-n M y / I^{\top}$	psi, Pa
	τ, tau	shear stress	$\tau_{\text {beam }}=\mathrm{VQ} / \mathrm{lb}$ where $\mathrm{Q}=\Sigma\left(\mathrm{y}_{\text {bar i }} \mathrm{A}_{\mathrm{i}}\right)$		psi, Pa
	q	shear flow	$\mathrm{q}=\mathrm{V}_{\text {beam }} \mathrm{Q} / \mathrm{I}=\mathrm{n} \mathrm{V}_{\text {fastener }} / \mathrm{s}$		
	v or y	beam deflection	$v=\iint M(x) d x^{2} / E l$		in, m
Topic		Equations			Units
stress trans- formation		planar rotations $\begin{gathered} \sigma_{\mathrm{u}}=\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right) / 2+\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right) / 2 \cos (2 \theta)+\tau_{\mathrm{xy}} \sin (2 \theta) \\ \sigma_{\mathrm{v}}=\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right) / 2-\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right) / 2 \cos (2 \theta)-\tau_{\mathrm{xy}} \sin (2 \theta) \\ \tau_{\mathrm{uv}}=-\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right) / 2 \sin (2 \theta)+\tau_{\mathrm{xy}} \cos (2 \theta) \end{gathered}$	principals and max in-plane shear$\begin{gathered} \tan \left(2 \theta_{\mathrm{p}}\right)=2 \tau_{\mathrm{xy}} /\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right), \theta_{\mathrm{s}}=\theta_{\mathrm{p}} \pm 45^{\circ} \\ \sigma_{1,2}=\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right) / 2 \pm \operatorname{sqrt}\left\{\left[\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right) / 2\right]^{2}+\tau_{\mathrm{xy}}{ }^{2}\right\} \\ \tau_{\max }=\operatorname{sqrt}\left\{\left[\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right) / 2\right]^{2}+\tau_{\mathrm{xy}}{ }^{2}\right\}=\left(\sigma_{1}-\sigma_{2}\right) / 2 \\ \sigma_{\mathrm{avg}}=\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right) / 2=\left(\sigma_{1}+\sigma_{2}\right) / 2 \end{gathered}$		psi, Pa
strain trans- formation		planar rotations $\begin{gathered} \varepsilon_{\mathrm{u}}=\left(\varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}\right) / 2+\left(\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{y}}\right) / 2 \cos (2 \theta)+\gamma_{\mathrm{xy}} / 2 \sin (2 \theta) \\ \varepsilon_{\mathrm{v}}=\left(\varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}\right) / 2-\left(\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{y}}\right) / 2 \cos (2 \theta)-\gamma_{\mathrm{xy}} / 2 \sin (2 \theta) \\ \gamma_{\mathrm{uv}} / 2=-\left(\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{y}}\right) / 2 \sin (2 \theta)+\gamma_{\mathrm{xy}} / 2 \cos (2 \theta) \\ \varepsilon_{\mathrm{z}}=-v\left(\varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}\right) /(1-v) \end{gathered}$	$\begin{gathered} \text { principals and max in-plane shear } \\ \tan \left(2 \theta_{\mathrm{p}}\right)=\gamma_{\mathrm{xy}} /\left(\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{y}}\right), \theta_{\mathrm{s}}=\theta_{\mathrm{p}} \pm 45^{\circ} \\ \varepsilon_{1,2}=\left(\varepsilon_{\mathrm{x}}+\varepsilon_{y}\right) / 2 \pm \operatorname{sqrt}\left\{\left[\left(\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{y}}\right) / 2\right]^{2}+\left(\gamma_{\mathrm{xy}} / 2\right)^{2}\right\} \\ \gamma_{\text {max }} / 2=\operatorname{sqrt}\left\{\left[\left(\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{y}}\right) / 2\right]^{2}+\left(\gamma_{\mathrm{xy}} / 2\right)^{2}\right\} \\ \varepsilon_{\text {avg }}=\left(\varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}\right) / 2 \end{gathered}$		psi, Pa in/in, m/m
Hooke's law		1D strain to stress $\sigma=E \varepsilon$ 2D strain to stress $\begin{gathered} \sigma_{x}=\mathrm{E}\left(\varepsilon_{\mathrm{x}}+v \varepsilon_{\mathrm{y}}\right) /\left(1-v^{2}\right) \\ \sigma_{\mathrm{y}}=\mathrm{E}\left(\varepsilon_{\mathrm{y}}+v \varepsilon_{\mathrm{x}}\right) /\left(1-v^{2}\right) \\ \tau_{\mathrm{xy}}=\mathrm{G} \gamma_{\mathrm{xy}}=\mathrm{E} \gamma_{\mathrm{xy}} / 2(1+v) \end{gathered}$	2D stress to strain$\begin{gathered} \varepsilon_{x}=\left(\sigma_{x}-v \sigma_{y}\right) / E \\ \varepsilon_{y}=\left(\sigma_{y}-v \sigma_{x}\right) / E \\ \varepsilon_{z}=-v\left(\varepsilon_{x}+\varepsilon_{y}\right) /(1-v) \\ \gamma_{x y}=\tau_{x y} / G=2(1+v) \tau_{x y} / E \end{gathered}$		psi, Pa in/in, m/m
pressure		$\begin{gathered} \sigma_{\text {spherical }}=\mathrm{pr} / 2 \mathrm{t} \\ \sigma_{\text {cylindrical, hoop }}=\mathrm{pr} / \mathrm{t} \\ \sigma_{\text {cylindrical, axial }}=\mathrm{pr} / 2 \mathrm{t} \end{gathered}$	$\begin{aligned} & \sigma_{\text {radial, outside }}=0 \\ & \sigma_{\text {radial, inside }}=-p \end{aligned}$		psi, Pa
failure theories		maximum principal stress theory $\sigma_{1,2}<\sigma_{y p}$	maximum τ_{m}	$\begin{aligned} & \text { tress theory } \\ & \sigma_{\mathrm{yp}} \end{aligned}$	psi, Pa

