$\qquad$

1. (3 points) Circle the following point on the beam's cross-section.
A. the location(s) where maximum shear stress $\tau=$ VQ/Ib occurs
B. the location(s) where zero shear stress $\tau=\mathrm{VQ} / \mathrm{Ib}$ occurs

2. (3 points) Label the following points on the beam's cross-section.
A. the location(s) where maximum shear stress $\tau=$ VQ/Ib occurs
B. the location(s) where zero shear stress $\tau=\mathrm{VQ} / \mathrm{Ib}$ occurs

3. (5 points) Determine the maximum shear force V.

4. (5 points) Determine the centroid location measured from the bottom of the cross-section.


$$
\mathrm{y}=\ldots \text { in. }
$$

5. (6 points) Determine the moment of inertia about the z-axis if the centroid is $y=7.5658$ inches from the bottom of the cross-section.


$$
\mathrm{I}_{\text {z-axis }}=
$$

$\qquad$ in. ${ }^{4}$
6. (6 points) Shear stress $\tau$ due to the indicated shear force V is to be calculated at the point indicated. Shade the area needed to calculate Q for each cross-section.



7. (7 points) Determine the following values used for finding the maximum horizontal shear stress $\tau=\mathrm{VQ} / \mathrm{Ib}$.

$$
\mathrm{b}=
$$

$\qquad$ in.

$\mathrm{Q}=$ $\qquad$ in. ${ }^{3}$
8. (3 points) Using the image for problem 7, determine the value for Q used for finding the maximum nail spacing.

$$
\mathrm{Q}=
$$

$\qquad$ in. ${ }^{3}$
9. (9 points) Determine the following values used finding the maximum horizontal shear stress $\tau=$ $\mathrm{VQ} / \mathrm{Ib}$. Use $\mathrm{D}=170 \mathrm{~mm}$ and $\mathrm{d}=150 \mathrm{~mm}$.

$\mathrm{b}=$ $\qquad$ mm
$\mathrm{I}=$ $\qquad$ $\mathrm{mm}^{4}$
$\mathrm{Q}=$ $\qquad$ $\mathrm{mm}^{3}$
10. (9 points) Describe the two deflection and/or slope boundary conditions for the following beams. Deflection boundary conditions should be formatted as $y=$ ? at $x=$ ?. Slope boundary conditions should be formatted as $\theta=$ ? at $\mathrm{x}=$ ?. Also state the distributed load equation $\mathrm{w}(\mathrm{x})$ for the given regions.

BC 1: $\qquad$

$\mathrm{w}(\mathrm{x})=$ $\qquad$

BC 1: $\qquad$

$\mathrm{w}(\mathrm{x})=$ $\qquad$

BC 1: $\qquad$

BC 2: $\qquad$

Between A and B,
$\mathrm{w}(\mathrm{x})=$ $\qquad$

11. (6 points) Circle the two incorrect numbers in the following formula for the deflection at $\mathrm{A} . \mathrm{E}=29,000 \mathrm{ksi}, \mathrm{I}=1710 \mathrm{in}^{4}$, and all of the numbers have been converted to inches and pounds.


$$
y_{A}=\frac{200,000(12)(180)^{2}}{2\left(29 \times 10^{2}\right)(1710)}+\frac{18,000(180)^{3}}{6\left(27 \times 10^{6}\right)((110)}+72\left[\frac{18,000(108)^{2}}{2\left(29 \times 10^{0}\right)(7110)}\right]
$$

12. (8 points) Fill in the missing piece of the following formula for the deflection at B. Numbers should be in meters and Newtons. Do not simplify.


$$
\begin{aligned}
y_{B}= & \frac{-140,000(3)(4)}{6(9) E I}\left[9^{2}-3^{2}-4^{2}\right]- \\
& +\frac{300,000(4)}{6(9) E I}\left[2(9)^{2}-3(9)(4)+4^{2}\right]+\frac{175,000(5)}{6(9) E I}\left[2(9)^{2}-3(9)(5)+5^{2}\right]
\end{aligned}
$$

13. (8 points) Fill in the missing pieces of the following formula for the deflection at D. Numbers should be in inches and pounds.

14. (3 points) What are the following values.

$$
\begin{aligned}
& \sigma_{\mathrm{x}}=\ldots \mathrm{ksi} \\
& \sigma_{\mathrm{y}}=\ldots \mathrm{ksi} \\
& \tau_{\mathrm{xy}}=\ldots
\end{aligned}
$$


15. (4 points) Using the following values, determine the $\theta_{\mathrm{p}}$ and $\theta_{\mathrm{s}}$.
$\sigma_{x}=82 \mathrm{MPa}$
$\sigma_{\mathrm{y}}=48 \mathrm{MPa}$
$\tau_{\mathrm{xy}}=-26 \mathrm{MPa}$
$\theta_{\mathrm{p}}=$ $\qquad$ deg.
$\theta_{\mathrm{s}}=$ $\qquad$ deg.
16. (6 points) Using the following values, determine $\sigma_{\mathrm{u}}, \sigma_{\mathrm{v}}$, and $\tau_{\mathrm{uv}}$ and show these on an appropriate sketch.

$$
\begin{aligned}
& \sigma_{x}=18 \mathrm{MPa} \\
& \sigma_{\mathrm{y}}=-42 \mathrm{MPa} \\
& \tau_{\mathrm{xy}}=30 \mathrm{MPa} \\
& \theta=-25 \mathrm{deg} .
\end{aligned}
$$

17. (9 points) Determine the following values from the Mohr's circle. Assume plane stress.

$$
\sigma_{x}=
$$

$\qquad$ ksi
$\sigma_{\mathrm{y}}=$ $\qquad$ ksi
$\tau_{\text {xy }}=$ $\qquad$ ksi
$\theta_{\mathrm{p}}=$ $\qquad$ deg.
$\sigma_{1}=$ $\qquad$ ksi
$\sigma_{2}=$ $\qquad$ ksi
$\sigma_{\text {average }}=$ $\qquad$ ksi
$\tau_{\text {in-plane max }}=$ $\qquad$ ksi
$\tau_{\text {absolute max }}=$ $\qquad$ ksi


