\qquad

1. The strain components $\varepsilon_{x}=520 \mu \varepsilon, \varepsilon_{y}=-650 \mu \varepsilon$, and $\gamma_{x y}=750 \mu \mathrm{rad}$ are given for a point in a body subjected to plane strain.
a. (4 points) Sketch the deformed shape on the element to the right.

b. (9 points) Determine the strain components $\varepsilon_{n}, \varepsilon_{t}$, and $\gamma_{n t}$ at the point if the $n t$-axes are rotated with respect to the $x y$-axes by $\theta=35^{\circ}$, as illustrated in the figure. Do not sketch the deformed shape of the element.
$\varepsilon_{n}=$ \qquad $\mu \varepsilon$
$\varepsilon_{t}=$ \qquad $\mu \varepsilon$
$\gamma_{n t}=$ \qquad $\mu \mathrm{rad}$

c. (14 points) Determine the angles θ_{p} and θ_{s}, principal strains, and maximum in-plane shear strain at the point. Do not sketch the deformed shapes of the element.
$\theta_{p}=$ \qquad deg
$\theta_{s}=$ \qquad deg
$\varepsilon_{1}=$ \qquad $\mu \varepsilon$
$\varepsilon_{2}=$ \qquad $\mu \varepsilon$
$\gamma_{\max }=$ \qquad $\mu \mathrm{rad}$
2. (10 points) The strain rosette shown in the figure was used to obtain normal strain data at a point on the free surface of a machine part. $\varepsilon_{a}=$ $550 \mu, \varepsilon_{b}=-730 \mu$, and $\varepsilon_{c}=-375 \mu$. Determine the strain components $\varepsilon_{x}, \varepsilon_{y}$, and $\gamma_{x y}$ at the point.

$$
\begin{aligned}
& \varepsilon_{x}=\ldots \mu \varepsilon \\
& \varepsilon_{y}=\ldots \mu \varepsilon \\
& \gamma_{x y}=\ldots
\end{aligned}
$$

3. (8 points) The strain components $\varepsilon_{x}=390 \mu, \varepsilon_{y}=820 \mu$, and $\gamma_{\mathrm{xy}}=-560 \mu$ are given for a point on the free surface of a machine component. The modulus of elasticity for the material is $\mathrm{E}=73 \mathrm{GPa}$ and the Poisson's ratio is $v=0.30$. Determine the stresses σ_{x} and τ_{xy} at the point.

$$
\begin{aligned}
& \sigma_{x}=\quad \mathrm{MPa} \\
& \tau_{x y}=\quad \mathrm{MPa}
\end{aligned}
$$

4. (5 points) A spherical gas-storage tank with an inside diameter of 12 m is being constructed to store gas under an internal pressure of 1.75 MPa . The tank will be constructed from structural steel that has a yield strength of 250 MPa . If a factor of safety of 3.0 with respect to the yield strength is required, determine the minimum wall thickness required for the spherical tank.

$$
\mathrm{t}_{\min }=
$$

\qquad mm
5. (5 points) A cylindrical boiler with an outside diameter of 3.60 m and a wall thickness of 40 mm is made of a steel alloy that has a yield stress of 415 MPa . Determine the maximum normal stress produced by an internal pressure of 2 MPa .

$$
\sigma_{\max }=
$$

\qquad MPa
6. A closed cylindrical vessel contains a fluid at a pressure of 720 psi . Assume $\sigma_{\text {hoop }}=22.32 \mathrm{ksi}$ and $\sigma_{\text {axial }}=11.16 \mathrm{ksi}$. Determine:
a. (4 points) the absolute maximum shear stress on the outer surface of the cylinder.

\qquad
b. (4 points) the absolute maximum shear stress on the inner surface of the cylinder.
$\tau_{a b s \max }=$ \qquad ksi
7. (9 points) Three loads are applied to the short rectangular post. The cross-sectional dimensions of the post are shown.
a. Using the positive sign convention shown, determine the following internal forces and moments acting on a x-z plane through points H and K.
$\mathrm{F}_{\mathrm{x}}=$ \qquad kN
$\mathrm{F}_{\mathrm{y}}=$ \qquad kN
$\mathrm{F}_{\mathrm{z}}=$ \qquad kN
$\mathrm{M}_{\mathrm{x}}=$ \qquad $\mathrm{kN}-\mathrm{m}$
$\mathrm{M}_{\mathrm{y}}=$ \qquad $\mathrm{kN}-\mathrm{m}$

$\mathrm{M}_{\mathrm{z}}=$ \qquad $\mathrm{kN}-\mathrm{m}$

$\mathrm{F}_{\mathrm{x}}=48 \mathrm{kN}$
$\mathrm{F}_{\mathrm{y}}=0 \mathrm{kN}$
$\mathrm{F}_{\mathrm{z}}=73 \mathrm{kN}$
$\mathrm{M}_{\mathrm{x}}=3 \mathrm{kN}-\mathrm{m}$
$\mathrm{M}_{\mathrm{y}}=0 \mathrm{kN}-\mathrm{m}$
$\mathrm{M}_{\mathrm{z}}=-2.5 \mathrm{kN}-\mathrm{m}$

$\sigma_{\mathrm{x}}=$ \qquad MPa
$\sigma_{y}=$ \qquad MPa
$\tau_{\mathrm{xy}}=$ \qquad MPa

8. (14 points) A solid steel crank has an outside diameter of 30 mm . For the following loadings, determine the normal and shear stresses on the top surface of the crank at point H.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{x}}=2350 \mathrm{~N} \\
& \mathrm{~F}_{\mathrm{y}}=-1275 \mathrm{~N} \\
& \mathrm{~F}_{\mathrm{z}}=0 \mathrm{~N} \\
& \mathrm{M}_{\mathrm{x}}=204 \mathrm{Nm} \\
& \mathrm{M}_{\mathrm{y}}=376 \mathrm{Nm} \\
& \mathrm{M}_{\mathrm{z}}=0 \mathrm{Nm}
\end{aligned}
$$

$\sigma_{x}=$ \qquad MPa
$\sigma_{\mathrm{z}}=$ \qquad MPa
$\tau_{\mathrm{xz}}=$ \qquad MPa

