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Abstract – We find that layered materials composed of various oxides of cations with s2 electronic
configuration, XY2O4, X = In or Sc, Y=Ga, Zn, Al, Cd and/or Mg, exhibit isotropic electron
effective mass which can be obtained via averaging over those of the corresponding single-cation
oxide constituents. This effect is due to a hybrid nature of the conduction band formed from the
s-states of all cations and the oxygen p-states. Moreover, the observed insensitivity of the electron
effective mass to the oxygen coordination and to the distortions in the cation-oxygen chains
suggests that a similar behavior can be expected in the technologically important amorphous state.
These findings significantly broaden the range of materials as efficient transparent conductor hosts.

Copyright c© EPLA, 2007

Transparent conducting oxides (TCOs) —the vital part
of many optoelectronic devices— have been known for a
century and employed technologically for decades [1–5].
Yet, the current TCO market is dominated by only three
materials, In2O3, SnO2 and ZnO, and the research efforts
are primarily focused on the oxides of post-transition
metals with (n− 1)d10ns2 electronic configuration.
Despite excellent optical and thermal properties as well as
low cost, oxides of the main group metals, such as Al2O3,
SiO2, MgO and CaO, have never been considered as
candidates to achieve useful electrical conductivity due
to the challenges of efficient carrier generation in these
wide-bandgap materials [6–8].
Multicomponent TCO with layered structure, e.g.,

InGaZnO4 [9–14], drew attention due to a possibility to
separate carrier donors (traditionally, oxygen vacancies
or aliovalent substitutional dopants) and the conducting
layers where carriers are transfered without charge
scattering on the impurities. In InGaZnO4, octahedrally
coordinated In layers alternate with double layers of
oxygen tetrahedrons around Ga and Zn, fig. 1. Because
octahedral oxygen coordination of cations was long
believed to be essential for a good transparent conduc-
tor [9,15–18], it has been suggested that in InGaZnO4
the charge is transfered within the InO1.5 layers while the
atoms in GaZnO2.5 layers were proposed as candidates
for efficient doping [9–11]. Conversely, it has been argued
that InGaO3(ZnO)m is a Zn 4s conductor [12].
To understand the role of local symmetry in the intrin-

sic transport properties of TCOs and to determine the

Fig. 1: (Colour online) The unit cell of InGaZnO4 where three
similar blocks consisting of one InO1.5 and two GaZnO2.5
alternate along the [0001] direction. Ga and Zn atoms are
distributed randomly. Three-dimensional interatomic (back-
ground) charge density distribution is evident from the contour
plot calculated in the (011)-plane. The plotted charge density
corresponds to the carrier concentration of ∼1× 1018 cm−3.

functionality of structurally and chemically distinct layers
in InGaZnO4, we employ the ab initio density functional
approach to study the electronic properties of various
single and multi-cation oxides. Further, using InGaZnO4
as a test model which exemplifies not only the structural
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Table 1: Net contributions from the states of the atoms that belong to the X-O1 or Y2-O2 layers (X= In or Sc, Y=Ga, Zn,
Al, Cd and/or Mg) to the conduction band wave function at the Γ point, in per cent; and the electron effective masses m, in
me, calculated from the band structure of the layered oxides and the components of the electron effective-mass tensor, ma,b,
and mz, calculated from eqs. (1) and (2) using the effective masses of the corresponding single-cation oxides.

XY2O4 NX NO1 NY2 NO2 m[100] m[010] m[001] mab mz

InGaZnO4 23 25 29 23 0.23 0.22 0.20 0.23 0.23
InAlCdO4 27 27 18 28 0.26 0.25 0.20 0.27 0.27
InGaMgO4 27 31 21 21 0.27 0.27 0.24 0.28 0.29
InAlMgO4 33 40 12 15 0.32 0.31 0.35 0.31 0.34
ScGaZnO4 8 19 40 33 0.33 0.33 0.34 0.33 0.53

but also the combinatorial peculiarities of complex TCOs,
we survey other ns2 cations —beyond the traditional In,
Zn and Ga— for a possibility of being effectively incorpo-
rated into novel multicomponent TCO hosts.

Isotropy of the electronic properties in

InGaZnO4. – The electronic band structure calculations
for InGaZnO4 show that the atoms from both InO1.5 and
GaZnO2.5 layers give comparable contributions to the
conduction band, fig. 2, leading to a three-dimensional
distribution of the charge density, fig. 1. Moreover,
the isotropy of the electronic properties in this layered
material manifests itself in the electron effective masses
being nearly the same in all crystallographic directions
(table 1).
The conduction band in InGaZnO4 consists of a set of

highly dispersed parabolic bands, fig. 3(a). Since the band
gap values in the corresponding single-metal oxides are
different, one may expect that each band is attributed
to a certain cation in this multicomponent compound.
However, we find that each band cannot be assigned to
a state of a particular atom since all atoms in the cell,
including the oxygen atoms, give non-negligible contribu-
tions to the conduction band wave function, fig. 2 and
table 1.
The conduction band dispersion calculated along the

[0001] crystallographic direction for a single unit cell,
fig. 3(b), reveals that the multiple bands can be attributed
to a “folding” of one parent band. Triple unfolding of the
conduction band corresponds to the three-time reduction
(expansion) of the conventional unit cell (Brillouin zone)
in the z-direction. Since the block of three layers (one
InO1.5 and two GaZnO2.5 layers, fig. 1) is repeated in
the unit cell via translation, the splitting between the
resulting bands (for the k-vector equal to π

c
, 2π
c
, 4π
c
, . . . ,

fig. 3(c)) is negligible. Although the subsequent unfolding
into three individual layers is not justified because the
three layers are structurally and chemically dissimilar,
fig. 1, we find that the band can be unfolded again,
fig. 3(c). The resulting highly dispersed band is in accord
with the stepless increase of the density of states, fig. 3(d).
Thus, the conduction band can be “unfolded” nine times
that corresponds to the total number of layers in the unit
cell. Therefore, the electronic properties of the individual
layers are similar.
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Fig. 2: (Colour online) Partial density of states at the bottom
of the conduction band for InGaZnO4 and InAlMgO4. Atoms
from both In-O1 and Ga-Zn-O2 (or Al-Mg-O2) layers give non-
negligible contributions.

Unconventional s2-cations at work. – A two-
dimensional electronic structure could be expected in
InAlMgO4 and ScGaZnO4 since the band gap values
in Sc2O3, Al2O3 and MgO are at least twice larger than
those in In2O3, Ga2O3, CdO and ZnO and, hence, the
unoccupied s-states of Sc, Al and Mg should be located
deeper in the conduction band. From the analysis of
the partial density of states for InGaMgO4, InAlCdO4,
ScGaZnO4 and InAlMgO4, we find that although the
contributions to the bottom of the conduction band from
Sc, Al and Mg atoms are notably reduced, these states
are available for electron transport, fig. 2. Thus, similar
to InGaZnO4 where the cations s-states are energetically
compatible, in all multicomponent oxides considered, the
conduction band wave function is a combination of the
s-states of all cations and the p-states of the oxygen
atoms. The contributions from the chemically distinct
layers are comparable, table 1, and, consequently, these
complex oxides exhibit a three-dimensional network for
the electron transport and isotropic electron effective
mass, table 1.

Comparison to single-cation TCOs. – The unfold-
ed conduction band in the layered multicomponent

57004-p2



Averaging of the electron effective mass in TCOs

0 k 2k
2.0

–2k –k

2.2

2.4

2.6

2.8

3.0

E
n
er

g
y

(f)

β1 β ββ
1 2 22

ε ε ε01 2
n

ε0

β

1

2

3

4

5

 [010]  Γ  [100] 

 E
n

er
g

y
 (

eV
)

 (a) 

1

2

3

4

5

 Γ  [001] 

 (b) 

 9k  6k  3k  0 

 (c) 

0 5 10

(d)

0

1

2

3

4

 H  Γ  P 

 E
n

er
g

y
 (

eV
)

 (e) 

Fig. 3: (Colour online) Electronic band structure of single- and multi-cation oxides. (a) Conduction band dispersion calculated
in the ab-plane and (b) along the [0001] direction in InGaZnO4. (c) The conduction band unfolded nine times that corresponds
to the number of [0001] layers in the unit cell, k= π

c
, c is the lattice parameter. The resulting single free-electron-like band

is in accord with the stepless total density of states (d), in states/eV. (e) Conduction band of In2O3 is given for comparison.
(f) Tight-binding conduction band (solid line) calculated for one-dimensional atomic chain depicted above the plot. Two types
of metal atoms (red and purple spheres) alternate with oxygen atoms (blue spheres) and only the nearest-neighbor hopping β
is assumed. To illustrate the effective mass averaging, cf. eq. (1), the conduction bands for the corresponding single-metal oxide
chains (dashed lines) are aligned with (ε1+ ε2)/2.

materials resembles those of single-cation TCOs, e.g.,
In2O3, cf. figs. 3(c) and (e). Such a highly dispersed
single conduction band is the key attribute of any conven-
tional [19] n-type TCO host [9,17,20–24]. Upon proper
doping, it provides both high mobility of extra carriers
(electrons) due to their small effective mass, and low
optical absorption due to high-energy inter-band transi-
tions from the valence band, Ev, and from the partially
filled conduction band, Ec, fig. 4. Even in relatively
small-bandgap oxides, e.g., CdO where the optical band
gap, Eg, is 2.3 eV, the high energy dispersion ensures
a pronounced Fermi energy displacement with doping
(the so-called Burstein-Moss shift) which helps to keep the
intense transitions from the valence band out of the visible
range. However, the large carrier concentrations required
for good electrical conductivity may result in an increase
of the optical absorption due to low-energy transitions
from the Fermi level up into the conduction band as
well as plasma frequency. Application-specific optical
properties and desired band offsets (work functions) can
be attained in a multicomponent transparent conductor
with a proper composition.
In both single- and multi-cation oxides, the conduc-

tion band is formed from the empty s-states of the metal
atoms and the oxygen antibonding p-states, e.g., fig. 2.
For multicomponent oxides we find that even at the
bottom of the conduction band, i.e., at the Γ point, the
contributions from the oxygen p-states are significant,
table 1. Thus, the key feature of the conduction band in
a conventional TCO —its high energy dispersion— orig-
inates in a strong interaction between the cation s-states
and the anion antibonding p-states [17]. The direct s-s
overlap is insignificant, fig. 1, and therefore, the s-s inter-
actions, which were commonly assumed to play to key
role in the electronic properties of TCO [12,14,16], do not
govern the transport properties in these oxides. Indeed, the

small electron effective mass in s2-cation oxides is deter-
mined by the strong s-p interactions [25].
From orbital symmetry considerations, one can see

that the oxygen coordination of cations does not affect
the s-p overlap. Instead, the largest overlap should
be attained in materials where the oxygen atom is
coordinated octahedrally by cations with the extended
s-orbitals [17]. Our systematic comparison of the calcu-
lated electron effective mass in the oxides of metals with
s2 electronic configuration, fig. 4, shows that the mass
slightly decreases as the ionic radii of the cations from
the same group or the symmetry of the same-cation oxide
increases. However, variations in the oxygen coordination
as well as strong distortions in the metal-oxygen chains
in different oxide phases lead to insignificant changes in
the effective mass. For example, for cubic (octahedral
coordination) and hexagonal (tetrahedral) ZnO or for
corundum (distorted tetrahedral) and monoclinic β-phase
(both distorted tetrahedral and trigonal) Ga2O3 the
corresponding electron effective masses vary by 15% or
9%, respectively. The largest deviation in the effective
mass values for various SiO2 phases is 26%. Furthermore,
the effective mass remains isotropic for all phases of the
s2-cation oxides —including silica ITQ-4 zeolite with large
pore channels1. These observations explain the success of
amorphous transparent conducting oxides —in marked
contrast to the amorphous Si, where the directional inter-
actions between the conduction p-orbitals lead to strong
anisotropy of the transport properties which are sensitive
to the orbital overlap and hence to the distortions in the
atomic chains [14]. Finally, we note that the fact that
the calculated as well as the observed [26] isotropic

1One exception is SiO2 in high-temperature rutile phase with
two unique Si-O bonds: the calculated effective mass in the ab-plane
(long Si-O bond) is 2.6 times larger than the one in the z-direction
(short Si-O bond).
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Fig. 4: (Colour online) The key electronic features of n-type TCO hosts. High energy dispersion of the conduction band (left)
is essential for both high mobility of extra carriers due to their small effective mass and low optical absorption. For complete
transparency in the visible range, the inter-band transitions Ev and Ec should be >3.1 eV, while the intra-band transitions
as well as plasma frequency should be <1.8 eV. Such a dispersed conduction band along with the above-visible optical transitions
at the Γ point are found in a variety of oxides with s2-cation(s). The electron effective mass calculated for different oxide
phases shows little dependence on the oxygen coordination and is isotropic (δ=(ma+mb)/2mc− 1). The highlighted areas are
to guide the eye; red circles represent currently known TCO hosts.

effective mass in rutile SnO2 where the direct overlap
between Sn s-orbitals is possible (only) along the [001]
direction, corroborate our conclusion that the s-s interac-
tions do not govern the transport properties as discussed
above.

Effective mass averaging. – Because the local
symmetry (nearest neighbors), the cation-oxygen bond
lengths and, hence, the s-p overlap are similar in the single
and multi-cation oxides, the intrinsic transport properties
in the layered materials should be related to those in the
single-cation oxides. Moreover, due to the hybrid nature
of the conduction states in the multicomponent oxides,
the states of all cations should give the same order of
magnitude contributions to the effective mass. Thus, we
expect the latter to be an “effective” average over the
effective masses of the corresponding single-cation oxides.
Indeed, we find that in case of one-dimensional atomic
chain where two types of metal atoms alternate with
oxygen atoms, the effective mass averaging can be derived
analytically, fig. 3(f).
We formulate a simple approach which allows one to

estimate the effective mass of the multicomponent oxides

as follows. With proper doping, the Fermi energy is shifted
up into the conduction band (Burstein-Moss shift). When
the extra electrons propagate along the z-direction, i.e.,
across the layers, the resulting resistivity is a sum of the
resistivities of each layer. Therefore, the z-component of
the average effective-mass tensor can be found as

mz = (m1+m2+m3)/3, (1)

where m1,2,3 are the effective masses of the corresponding
single-metal oxides —In2O3, Ga2O3 and ZnO in the case
of InGaZnO4.
For the in-plane charge transport in the layered mate-

rials, the effective-mass tensor components can be found
in a parallel fashion. Note, that one needs to average the
effective mass for the mixed GaZnO2.5 layers:

1

ma,b
=
1

3

(

1

m1
+

2
1
2 (m2+m3)

)

. (2)

The resulting ma,b and mz are presented in table 1. We
find that the increase of the electron effective masses in the
order InGaZnO4 < InAlCdO4 < InGaMgO4 < InAlMgO4
< ScGaZnO4 is well reproduced by the above averaging.
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Moreover, the ma,b and mz values nearly coincide with
the corresponding effective masses of the multi-cation
oxides with the exception of the Sc case. In fact, for the
Sc-containing compounds the effective mass averaging is
not legitimate due to the presence of the empty d-states
of Sc near the conduction band edge. In Sc2O3, the Sc
d-states are located at 0.5 eV above the conduction band
edge, and therefore give significant contributions to the
effective mass which is about the mass of an electron.
In the multi-cation oxide, the Sc d-states are found to
be at ∼2 eV above the conduction band edge, so that
the resulting small effective mass, table 1, is determined
primarily by the s-p interactions —similar to the rest of
the s2-cation oxides.
The effective mass averaging procedure, eqs. (1) and (2),

can be generalized for materials consisting of any number
of layers, e.g., for InGaO3(ZnO)m, m = integer. Further-
more, since the intrinsic transport properties are deter-
mined entirely by the local symmetry, i.e., the nearest
neighbors, the effective mass averaging should apply to
TCOs in the amorphous state. In this case, one needs
to average the components of the effective-mass tensor,
mamorph = (ma+mb+mz)/3.

Importance of carrier generation. – Upon doping
of a TCO host material, the resulting conductivity
depends not only on the effective mass but also on
the carrier generation mechanism, carrier concentration
and carrier relaxation time. Doping of a structurally
anisotropic material may lead to non-uniform distribution
of the carrier donors and, therefore, the isotropic behavior
of the host may not be maintained as, for example,
in oxygen-deficient β-Ga2O3 [27]. In multicomponent
InGaO3(ZnO)m, different valence states (In

3+ and Ga3+

vs Zn2+) and oxygen coordination (octahedral for In vs.
tetrahedral for Ga and Zn) are likely to result in prefer-
ential arrangement of aliovalent substitutional dopants
or oxygen vacancies. Consequently, an anisotropic
mobility should be expected in the layered materials
due to the spatial separation of the carrier donors and
the layers where the extra carriers are transfered effi-
ciently, i.e., without charge scattering on the impurities.
While targeted doping can help to make either or both
structurally distinct layers conducting, the amorphous
complex oxides readily offer a way to maintain isotropic
transport properties. Indeed, experimental observations
that the mobility and conductivity are independent of
the large variations in the composition in amorphous
InGaO3(ZnO)n with n � 4 [12] and that the effective
masses of amorphous and crystalline InGaZnO4 are
nearly the same [28] support our conclusions.
For efficient doping of wide-bandgap oxides such as

MgO, CaO, SiO2 and Al2O3, novel carrier generation
mechanisms should be sought. A non-traditional approach
has already yielded promising results in calcium alumi-
nates [29–31] —a conceptually new class of transparent
conductors [19]. Multicomponent oxides —such as those

considered in this work, ordered ternary oxides [32] as
well as their solid solutions and amorphous counterparts—
represent an alternative way to utilize the abundant main-
group elements such as Ca, Mg, Si and Al towards novel
TCO hosts with a predictable effective mass and optical
and transport properties controllable via the composition.

∗ ∗ ∗

The work is supported by University of Missouri
Research Board.

Appendix

Theoretical methods. – The first-principles full-
potential linearized augmented plane wave method [33,34]
with the local density approximation is employed for
electronic band structure investigations of the XY2O4
compounds, X = In or Sc and Y = Ga, Zn, Al, Cd
and/or Mg, and single-cation oxides. Cutoffs for the basis
functions (16.0Ry) and potential representation (81.0Ry),
and expansion in terms of spherical harmonics with �� 8
inside the muffin-tin spheres were used. The muffin-tin
radii are 2.3 to 2.4 a.u. for In, Sc and Cd; 1.9 to 2.1 a.u.
for Ga, Mg, Zn and Al; and 1.5 to 1.6 a.u. for O atoms.
Summations over the Brillouin zone were carried out using
at least 14 special k points in the irreducible wedge.

Structure optimization. – XY2O4 compounds
have rhombohedral R3̄m crystal structure of YbFe2O4
type [35,36]. Indium (or scandium) atoms substitute Yb
in 3(a) position, while both Y3+ and Y2+ atoms replace
Fe in 6(c) position and are distributed randomly [37].
Our total energy calculations for several structures in the
(a, 2a,c) supercell with various arrangements of the Y2+

and Y3+ atoms suggest that their arrangement is not
ordered but random —in agreement with the experiment.
We note here that the electronic band structure features
are similar for different spatial distributions of the Y
atoms for the reasons discussed in the paper.
Since the valence state and ionic radii of Y2+ and Y3+

are different, the site positions of these atoms as well
as their oxygen surrounding should be different. Because
the exact internal positions of atoms are unknown, we
used those of the YbFe2O4 [35] as the starting values
and then optimized each structure via the total energy
and atomic forces minimization. During the optimization,
the lattice parameters were fixed at the experimental
values [36,38]. We find that the optimized cation-anion
distances correlate with ionic radii of the cations.

Single-cation oxides. – For the single-cation oxides,
the following phases have been calculated: Fm3̄m for
MgO, CaO, SrO, BaO and YbO; Ia3̄ for Sc2O3 and Y2O3;
Fm3̄m and P63mc for ZnO; Fm3̄m for CdO; R3̄c for
Al2O3; R3̄c and C2/m for Ga2O3; Ia3̄, R3̄c and I213
for In2O3; P3221, P21/c, P63/mmc, P41212 and I2/m
for SiO2; P41212 and P42/mnm for GeO2; P42/mnm and
Pbcn for SnO2. For each structure, the internal positions
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of all atoms have been optimized via the total energy and
atomic forces minimization, while the lattice parameters
were fixed at the experimental values.

One-dimensional model of complex oxides. – The
effective mass averaging, cf. eq. (1), can be shown analyt-
ically using a one-dimensional model in the tight-binding
approximation. To capture the key features of complex
oxides, we consider a chain consisting of two types of metal
atoms which alternate with oxygen atoms, fig. 3(f), and
assume only the nearest-neighbor interactions given by
the hopping integrals β1 and β2. The Hamiltonian of this
model system is

H =
∑

n,l

|n, l〉εl〈n, l|+
∑

n,n′,l,l′

|n′, l′〉βl〈n, l|. (A.1)

Here, l is the atom index in the unit cell, n enumerates
the cells and n′, l′ in the second sum run over the nearest
neighbors. For the bottom of the conduction band, the
dispersion relation can be simplified to

ε(k) =
ε1+ ε2
2

+
1

1
2 (
∆
β2
1

+ ∆
β2
2

)
[ka]

2
, (A.2)

if |ε1− ε2|< 2
∣

∣

∣

β2
1
−β2

2

∆

∣

∣

∣
. Here ε0, ε1 and ε2 are the atomic

level energies of the oxygen and two types of metal atoms,
respectively, and it is assumed that ε0 < ε1,2 and ε1 ∼ ε2;
∆= 12 (ε1+ ε2)− ε0 and a is a half of the lattice parameter.
Similar considerations for the chain consisting of only
one type of metal atoms alternating with oxygen atoms
show that the quantity ∆

β2
represents the effective mass of

the system. Therefore, eq. (A.2) represents the effective
mass averaging over those of the corresponding single-
metal “oxide” chains, cf., fig. 3(f) —in agreement with the
results of our first-principles calculations. The following
parameters were used to plot fig. 3(f): ε0 = 1.00, ε1 = 2.00,
ε2 = 2.05, β1 = 0.4 and β2 = 0.5.
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