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Abstract. Although a number of recent studies on using BN for system reliability estimation 
have been proposed, these studies are based on the assumption that a pre-built BN was 
designed to represent the system. In these studies, the task of building the BN is typically left to 
a group of specialists who are BN and domain experts. However the process of building a 
system-specific BN is generally very time consuming and may lead to incorrect deductions. As 
there are no existing studies to eliminate the need for a human expert in the process of system 
reliability estimation, this paper introduces a holistic method that uses historical data about the 
system to be modeled as a BN and provides efficient techniques for automated construction of 
the BN model and estimation of the system reliability. Moreover, very limited human 
intervention is sufficient for the process of BN construction and reliability estimation.  

Introduction 
System reliability can be defined as the probability that a system will perform its intended 
function during a specified period of time under stated conditions (Gran and Helminen 2001). 
Traditionally, engineers estimate reliability by understanding how the different components in 
a system interact for system success. Based on this understanding, typically a graphical model 
(usually in the form of a fault tree, a reliability block diagram or a network graph) is 
constructed to represent component interactions. Using the graphical model, different analysis 
methods  such as minimal cut sets, minimal path sets, Boolean truth tables, etc (Coyle, Arno, 
and Hale 2002; Fenton, Krause, and Neil 2002; Gopal, Kuolung, and Nader 2001) are used to 
represent system reliability quantitatively. At the end, the reliability characteristics of the 
components in the system are introduced into the mathematical representation in order to 
obtain a system level reliability estimate. This approach is valid whenever the system success 
or failure behavior is well understood. However, for complex systems (i.e., systems with large 
numbers of components and/or complex component interactions), understanding component 
interactions, which usually requires intervention of a domain expert, may prove to be a 
challenging problem.  
 Bayesian networks (BN) have been proposed as an alternative to traditional reliability 
estimation approaches (Amasaki et al. 2003; Boudali and Dugan 2006; Gran and Helminen 
2001). BN have significant advantages over traditional frameworks, partly because they are 
easy to use in interaction with domain experts in the reliability field (Sigurdsson, Walls, and 
Quigley 2001). Current approaches for reliability analysis via a BN (Amasaki et al. 2003; 
Bobbio et al. 2001; Sigurdsson, Walls, and Quigley 2001) use specialized networks, each of 
which is designed for a specific system. In these studies, the BN structure to be used for 
estimating system reliability should be known a priori. This assumption presupposes that the 
BN should be built by an expert who has “adequate” knowledge about the system behavior. 
However, finding such an expert may not be possible at all times for every system under 



  

consideration. Moreover, the number of such experts is limited and finding one is usually 
difficult and costly (Lagnseth and Portinale 2005). Also, human intervention is always open to 
unintentional mistakes, which could cause discrepancy in the results. These issues are 
particularly true in complex systems, where the number of components and interactions are 
larger and thus, the likelihood of miscalculations can be substantial. 

To address these issues, this study introduces a holistic method for estimating system 
reliability by linking BN construction from raw component and system data, association rule 
mining and evaluation of conditional probabilities. Based on our literature review, this is the 
first study that incorporates these methods for estimating system reliability to reduce the need 
for human intervention. The proposed method automates the process of BN construction by 
using the K2 algorithm (a commonly used association rule mining algorithm), which has been 
proven to be efficient and accurate for finding associations (Cooper and Herskovits 1992) from 
a dataset of historical data about the system. Moreover, unlike previous approaches, the 
proposed solution is not system specific, it can be applied to systems following any kind of 
configuration (two terminal, k-terminal, all terminal, etc…) and behavior (binary, capacitated 
and multi-state). In essence, our approach can build a BN and estimate reliability for any 
system when observed system data is available (Doguc and Ramirez-Marquez 2007).   

Literature Survey 
Estimating systems reliability using BN dates back as early as 1988, when it was first defined 
by Barlow (Barlow 1988). The concept of BN has been discussed in several earlier studies 
(Cowell et al. 1999; Jensen 2001; Pearl 1988); the idea of using BN in systems reliability has 
gained acceptance within the last decade because of the simplicity it allows to represent 
systems and the efficiency for evaluating component associations. More recently, BN have 
found applications in software reliability (Fenton, Krause, and Neil 2002; Gran et al. 2000), 
fault finding systems (Jensen 2001), and general reliability modeling (Bobbio et al. 2001). In 
recent studies, predefined BN are used for reliability estimation for specific systems. For 
example, Gran and Helminen (Gran and Helminen 2001) study on building BN for nuclear 
power plants and introduce a hybrid method for estimating the reliability of the plant. In their 
study, they considered the nuclear plant as two subsystems; a software system and the plant 
hardware. Therefore they combined two BN that were being used for corresponding systems: 
1) The Halden Project (HRP) (Dahll and Gran 2000) uses a BN for risk assessment based on 
disparate evidences. 2) The VTT Automation (Helminen 2000) focuses on the reliability of 
software-based systems using BN. Additionally they discuss another challenge; each BN uses a 
different modeling and simulation environment.  

In another study Helminen and Pulkkinen present a BN-based method for reliability 
estimation of computer-based motor protection relay (Helminen and Pulkkinen 2003). In their 
study, Helminen and Pulkkinen assume existence of a BN that models the system and introduce 
methods for estimating prior probabilities and assessing the system reliability accordingly. 

In addition to these, Amasaki et al. (Amasaki et al. 2003) use BN for software quality 
assessment. They modeled the phases of a software system as a BN, and by using this model 
they simulated the faults that may occur in their system. After this step, they used the actual 
data and performed sensitivity analysis of the BN model that they constructed. In addition to 
these, Boudali and Dugan (Boudali and Dugan 2006) introduce a method for reliability 
assessment in dynamic systems by using temporal BN; where the system components change 
states at different time intervals. Moreover, Singh et al. (Singh et al. 2001) presents their work 
on reliability estimation in component based systems. They classify the component based 
system reliability estimation methods into three as state based models, path based models and 
additive models.  



 

  

Although all of the studies introduced in this section use BN for reliability estimation, they 
require human domain experts to evaluate the prior probabilities and understand the structure 
of the BN. In the next section, we introduce a methodology that automates the process of BN 
construction and reduces the need for a human expert for system reliability estimation. 

Bayesian Networks 
As discussed in the previous sections, BN have been used in various studies for estimating 
system reliability. In this section we first provide definitions of BN and Bayes’ theorem. Then 
we discuss the K2 algorithm that we used to create BN in this study.  
 
Using Bayesian Networks for System Reliability. One could summarize the BN as an 
approach that represents the interactions between the variables from a probabilistic 
perspective. This representation is modeled as a directed acyclic graph, where the nodes 
represent the variables and the links between each pair of nodes represent the causal 
relationships between the variables. In general, a fundamental assumption for the construction 
of a BN is that, the strength of the interaction/influence among the graph nodes is uncertain and 
thus, this uncertainty is represented by assigning a probability of existence to each of the links 
between nodes.  

From systems engineering perspective, the variables of a BN are defined as the 
components in the system while the links represent the interactions of the components leading 
to system “success” or “failure”. Under a reliability analysis perspective, a variable A in BN 
constitutes the success of a specific system component and therefore, p(A) represents the 
probability of success for such a component. For non-trivial systems -systems not following a 
series, parallel or any combination of these configurations- the failure/success probability of a 
system is usually dependent on the failure/success of a non-evident collection of components. 
Strictly speaking, the probability of success of a component is conditional on the available 
evidence from other components. In a BN this dependency is represented as a directed link 
between two components, forming a child and parent relationship, so that the dependent 
component is called as the child of the other. Therefore, the success probability of a child node 
is conditional on the success probabilities associated with each of its parents (Fenton, Krause, 
and Neil 2002). The conditional probabilities of the child nodes are calculated by using the 
Bayes’ theorem via the probability values assigned to the parent nodes. Also, absence of a link 
between any two nodes of a BN indicates that these components do not directly interact for 
system failure/success thus, they are considered independent of each other and their 
probabilities are calculated separately.  

To illustrate these concepts, the BN shown in Figure 1 presents how five components of a 
system interact. In this BN the child-parent relationships of the components can be observed, 
where on the quantitative side the degrees of these relationships (associations) are expressed as 
probabilities (Lagnseth and Portinale 2005).  
 



  

 
Figure 1. A sample Bayesian network 

 
In Figure 1 the topmost nodes (X1, X2 and X4, representing components 1, 2, and 4 

respectively) do not have any incoming edges, therefore they are conditionally independent of 
the rest of the components in the system. The prior probabilities that are assigned to these 
nodes should be known beforehand -with the help of a domain expert or using historical data 
about the system. Based on these prior probabilities, the conditional probability table (CPT) 
that belong to a dependent node, such as X3, can be calculated using Bayes’ theorem as 
illustrated by equation (1):  
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Equation (1) shows that the probability for the node X3 is independent of nodes other than 

X1 and X2 in the system. Similar to prior probabilities, CPT can be computed by using historical 
system and component data. However, an important question on how to discover the 
associations among the system components still remains. As an alternative to using a domain 
expert for this purpose, an unsupervised BN construction algorithm, K2 is used in this paper.  
 
The K2 Algorithm. The K2 algorithm, for construction of a BN, was first defined by Cooper 
and Herskovits (Cooper and Herskovits 1992) as a greedy heuristic search method. This 
algorithm searches for the parent set for a node that has the maximum association with it. The 
K2 algorithm is composed of two main factors: a scoring function f to quantify the associations 
and rank the parent sets according to their scores, and a heuristic to reduce the search space to 
find the parent set with highest degree of association. The K2 algorithm would need to examine 
all possible parent sets, i.e. starting from the empty set, it should consider all subsets of set of 
possible parents without the heuristic. With the help of the heuristic, the K2 algorithm does not 
need to consider the whole search space; it starts with the assumption that the node has no 
parents and adds incrementally that parent whose addition most increases the scoring function. 
The K2 algorithm stops adding parents to the node when addition of no single parent can 
increase the score.  

Illustration of Our Methodology 
This section provides a step-by-step explanation of the BN construction framework and system 
reliability estimation method discussed in the previous section. Table 1 presents an example 
historical dataset that contains observations on the sample system shown in Figure 1 with five 
components labeled X1 to X5. Each row in Table 1 shows the states of the system components at 
an instance of time ti; when the observation was done. For the sake of simplicity and without 
loss of generality in the proposed method, component failure data exhibits binary behavior. 



 

  

That is, for each component Xi, the value of 0 represents failure while the value of 1 represents 
full functionality for the corresponding observation. Also, in Table 1, information about the 
overall System Behavior is provided in last column. 
 

Table 1: Dataset for the illustrative example 

Observation X1 X2 X3 X4 X5
System 

Behavior
1 1 1 0 0 0 1 
2 0 1 1 0 0 0 
3 1 0 1 1 1 1 
4 0 0 0 0 0 0 
5 1 1 1 0 1 1 
6 0 1 1 1 0 0 
7 1 0 0 1 0 1 
8 0 0 1 1 1 1 
9 1 1 1 0 0 0 
10 0 1 0 1 1 1 

 
Our proposed method uses a dataset such as displayed in Table 1; finds associations 

between the columns (system components); calculates the degrees of these associations; builds 
the associated BN and finally uses it to estimate overall system reliability. In the first step of 
our method the K2 algorithm starts with the first component in the dataset, X1. Since X1 does 
not have any succeeding components (i.e. possible candidate parents), the K2 algorithm skips it 
and picks the second component in the dataset, which is X2. 

For X2, there are two alternative parent sets: the empty set φ , or X1. Therefore, the K2 
algorithm computes the scoring function f for each of these alternative parent sets and 
compares the results. Then, the set of candidate parents with highest f score is chosen as the 

parent set for X2. At the end of this iteration the values 
2310

1  and 
3600

1  are calculated and then 

compared; and the former, representing the score of the empty set {φ }, picked as the parent. So 
the K2 algorithm decides that X2 has no parents, which means that there is no association 
between X1 and X2. 

In the next iterations of the K2 algorithm, the number of possible candidate parent sets to 
be considered and the amount of computations for f score calculation increases. Skipping the 
details, f scores of the candidate parent sets for the X3 component are given in Table 2. Because 
the K2 algorithm iterates on the components according to their ordering in dataset, components 
X4 and X5 are not taken into account as candidate parents for X3. The K2 algorithm selects the 
set {X1, X2} as parent set of X3, because it has the highest f score. The number of computations 
grows with the order of the component in the system, and when the K2 algorithm finishes with 
the last column (System Behavior in Table 1), it outputs the BN structure displayed in Figure 1.  

 
Table 2: f scores for all possible candidate parent sets for X3 

Parent Set f score 
φ  

2310
1

 

{X1} 2772
1  

{X2} 3600
1  



  

{X1, X2} 288
1  

 
The next step of the proposed method estimates system reliability using the BN that was 

constructed by the K2 algorithm. Besides the associations that were discovered by the K2 
algorithm in the previous step, the inference rules should be used to calculate the conditional 
probabilities between the nodes in the BN. The conditional probabilities are essential in 
calculating the overall reliability of the system, as they represent the degrees of associations 
between components of a system. Each component with a non-empty parent set in the network 
is associated with a CPT. In this step, with the help of CPT and the prior probabilities that X1 
and X2 have, the success probability value for X3 can be calculated. According to the BN 
structure in Figure 1, components X1 and X2 are independent of others; therefore their success 
probabilities can be directly inferred from the observations dataset in Table 1. From Table 1 it 
can be evaluated that p(X1=1)=0.5 and p(X2=1)=0.6 and the probability of success for 
component X3 can be calculated as 0.57 using Bayes’ rule provided in Equation (1). Extending 
the computations for the other components in the network, success probabilities for the rest of 
the components in the sample system can be evaluated; such that p(X4=1)=0.4 and 
p(X5=1)=0.6. In the last step, the system reliability can be calculated by using these probability 
values and the CPT of the “System Behavior” node in the BN structure given in Figure 1. The 
success probability for the System Behavior node is calculated as 0.72 or 72%; which is the 
reliability of the sample system presented in this section. The proposed method for estimating 
system reliability using observations dataset is superior to previously defined methods due to 
its unsupervised nature; almost all steps of the required computations can be carried out 
without any human intervention. 

Experimental Analysis 
In this section, experimental analysis on the performance of our proposed method for system 
reliability estimation is provided. In order to give a better perception of analysis, performances 
of the two phases of the proposed method (BN construction and reliability estimation) are 
examined separately. First, performance and correctness of the K2 BN construction algorithm 
is analyzed using historical data (obtained via Monte Carlo simulation) for the following BN: 
 

  
 

 
 

Figure 2. Case BN tested on the K2 algorithm. 
 

BN displayed in Figure 2 represent different systems with various components. For our 
experimental analysis, separate data sets -similar to Table 1- are used for each example BN. As 
it was explained in the previous section, the K2 algorithm uses historical system data as input. 

1 2 3 

4 5 6



 

  

Therefore running time of this algorithm is highly dependent on the size of the input data set, 
i.e. number of nodes (n) and number of observations (t). Each of the case BN shown in Figure 2 
has different number of nodes ranging from 5 to 16, and the performance of the K2 algorithm 
on each BN is analyzed using different input data sets. Figure 3 shows the experimental results 
on the performance of the K2 algorithm. It can be observed from Figure 3 that the running time 
of the K2 algorithm is quadratic (O(n2)) with the number of nodes and linear with the number of 
observations. This is an expected result, since the K2 algorithm reduces the time-complexity of 
finding associations from exponential (2n) to quadratic (n2). This brings the conclusion that for 
even substantially large systems (n > 100) the K2 algorithm will be efficient to use (i.e., doing 
10,000 iterations instead of 2100).  

 

 
Figure 3. Running time of the K2 algorithm  

 
The number of observations that are used for discovering the associations between system 

components is an important measure for both efficiency of the K2 algorithm and correctness of 
the constructed BN. Also accuracy of the reliability estimation is highly dependent on 
correctness of the underlying BN model. Errors in the K2 algorithm would lead to incorrect 
assignments of associations in the BN; which will end up with inaccuracies in the reliability 
values. Once the BN is correctly constructed, estimating the system reliability is simple and 
straightforward as discussed in the previous section; therefore in this section we evaluate 
correctness of the BN constructed by the K2 algorithm. The K2 algorithm can be expected to 
find out associations more accurately when more observations used as input (Cooper and 
Herskovits 1992). Using the constructed BN, error rate (ρ) of the K2 algorithm can be 
calculated by using Equation (2): 
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In Equation (2), a false positive (AFP) is defined as an association decided by the K2 
algorithm; however does not exist in the actual BN given in Figure 2. Conversely, a false 
negative (AFN) is defined as an existing association in the actual BN that is missed by the K2 
algorithm. Both should be taken into account while calculating accuracy (where accuracy = 
1-ρ) of the K2 algorithm with the constructed BN. In this study, correctness of the constructed 
BN models are evaluated by using data sets with 10, 100 and 1000 observations for different 
case networks. General analysis results on the correctness and accuracy are provided in Figure 
4.  
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Figure 4. Accuracy of Results in BN Construction  

 
According to Figure 4, regardless of the size of the constructed BN, accuracy of the BN 

model increases as more observations are used. This is an expected result, since associations 
between the components are decided by using the observations and these associations can be 
figured out more precisely when more observations available.  

We used the case networks displayed in Figure 2 in our experiments. Our experimental 
results for the accuracy of BN construction as well as the CPU times for BN construction and 
reliability estimation are presented in Table 6. For our experiments we used a computer 
equipped with an Intel Centrino 2Ghz CPU and 2GB RAM. Moreover we implemented our 
proposed method in Matlab 7.0.  

 
Table 6: Compilation of results for case BN 

Case 
Network 

Number 
of 

Nodes 

Number of 
associations

K2 
algorithm 

CPU 
time 

(seconds)

Accuracy of 
the 

constructed 
BN (w/1000 
observations)

Reliability 
Estimation 
CPU time  
(seconds) 

1 4 5 1.839 100.00% 0.465 
2 6 8 10.471 100.00% 0.981 
3 5 8 5.567 100.00% 0.830 
4 8 11 37.898 90.91% 1.004 



 

  

5 7 12 26.012 91.66% 0.991 
6 16 24 148.762 87.50% 1.587 

Conclusions 
Estimating system reliability using BN is a very popular practice and has been widely studied 
recently. There are numerous methods in the literature defined for estimating system reliability, 
which are mainly focused on doing it for specific systems, such as nuclear plants. However 
none of these studies dealt with the problem of requiring a human expert to construct the BN. 
This is the first study that introduces a methodology for efficient construction of BN models 
and estimating system reliability, with limited very human expert requirement. The proposed 
method uses historical data about the system to be modeled and constructs the BN model 
automatically. The K2 algorithm is used for this purpose, which is a popular and efficient 
association rule mining method.  

Next it was shown that the system reliability can efficiently be estimated by using the BN 
model. According to the experimental results, reducing the running time of finding associations 
from O(2n) to O(n2), the proposed methodology can work efficiently even with substantially 
large systems. Moreover, the BN models constructed by the K2 algorithm are shown to be 
accurate, especially when more historical data about the system is available. As expected, the 
experimental results show that when 1,000 historical observations on the system are available, 
the constructed BN are more than 90% accurate. Accuracy of the constructed BN is highly 
influential on the correctness of the system reliability values, as incorrect associations in the 
BN would lead to biased calculations while estimating system reliability. In conclusion, the 
methodology introduced in this study will help systems engineers as it minimizes human 
interaction and provides efficient ways of automatically building a BN model and estimating 
system reliability.  
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