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Abstract.  As illustrated in the harmonization of ISO 15288 and ISO 12207, the disciplines 
of systems engineering and software engineering share many processes, methods, and 
concerns. In most systems of interest, software now provides a significant majority of 
functionality and increasingly is a significant component in determining non-functional 
attributes. Failures in system acquisition and implementation are often attributed to systems 
and/or software engineering shortfalls. The need to apply systems engineering to software 
design and development, as well as the need to incorporate software engineering concepts 
into systems engineering decisions, implies that a closer relationship between the two 
disciplines is appropriate. This paper states a clear rationale for integrating the two 
disciplines, defines a framework that establishes a vocabulary for discussing integration, and 
presents initial findings in using that framework to describe systems and software integration 
in ongoing defence programs.  

From the Trenches 
“The selected architectural concept resulted in underutilized software capability.” 

“Non‐functional  requirements,  such  as  reliability,  cause  difficulty  when  there  is 
software  involved.  Hardware  reliability  numbers  are  calculated  to many  decimal 
places,  and  include  the  contributions  of  very  low‐level  WBS  [work  breakdown 
structure] components, but software reliability is not understood and so ignored.” 

“Unless developed collaboratively, software specifications often limit the software 
architects and designers trade space for solutions.” 

“We  [software  developers]  often  find  ourselves  having  to  rewrite  the  software 
specifications provided by systems engineering so that they are achievable.” 

“The difference in speed of maturation between hardware [system] requirements, 
and  software  requirements  causes  tension  between  systems  engineers  and 
software engineers.” 

These are a few nuggets from interviews on integrating systems and software engineering 
conducted with nine defence acquisition programs. Most of the programs interviewed were 
successfully dealing with integration issues in individual, context-related ways. They all 
agreed, however, that the systems being developed today needed more collaboration between 
software and systems engineers.  

Of course, this raises issues as to the definition of collaboration and how much of it is 
needed. Unfortunately, because of poor communication concepts, there has not been a good 
way to discuss these and related issues.    



  

The Evolution of Systems 
The meaning of “system” has changed over time as technology and the technological 
infrastructure have changed. Obviously, there have always been systems, but the way we as 
humans perceive them has evolved. To early humans nature was a system totally dependent 
on the wishes and whims of local deities or spirits. This is a long way (or perhaps not) from 
our partial understanding of the intricate and complex interactions of the earth’s ecosystem. 
The systems we are primarily concerned with are those that are human-engineered, and as 
you would imagine, their definitions have changed as well. 

Systems engineering (SE) was developed to address systems we refer to by the retronym 
classical systems.  Originally composed purely of hardware, these systems evolved to include 
software embedded within the hardware components.  As hard as it might be to imagine 
today, the gun directors and bombsites of World War II were analog computers that 
mechanically modeled the computational problems they were intended to solve; passenger 
cars were devoid of software until the late 1960s; and electromechanical crossbar switches 
formed the backbone of public switched telephone networks well into the 1970s.   When 
software was introduced into these systems, it was generally treated as another component, a 
simple extension of the hardware. This treatment was appropriate, since the limitations of the 
available technology ensured that software was relegated to low-level functionality, deeply 
embedded within the hardware and used to perform functions that were incidental to the 
interests of systems engineers.  
Software engineering (SwE) was developed to address the design of information systems in 
which software was the principal source of functionality and existed at the highest levels of 
the system.  Through the use of layered architectures, these systems were designed in such a 
way as to insulate the application software as much as possible from the general-purpose 
hardware on which they operated.  In effect, software in these systems used the hardware but 
it was designed so it could be ported from one hardware platform to another and modified 
without regard to the hardware substrate beneath it. 

Today’s systems, however, from cell phones and automobiles to aircraft and ammunition, are 
neither primarily hardware nor primarily software, but rather a highly interwoven 
combination of both.  Consider the case of automotive anti-skid, in which an automobile’s 
steering, brakes, throttle and active suspension “collaborate” to ensure that the vehicle 
maintains traction under the most hazardous of circumstances.  The success of this function 
does not depend primarily on hardware or primarily on software, but on the close cooperation 
of both working together without the driver in the loop.  At a recent meeting, a speaker 
asserted that “the only system that doesn’t contain software today is bullets,” to which 
another participant responded, “Oh, we make bullets with software.”   
The truth is that today, nearly all interesting systems are a combination of hardware and 
software, in which both are equal partners in realizing the required system functionality.  For 
these interdependent systems, neither traditional SE techniques nor traditional SwE 
techniques are sufficient by themselves – the hardware and software must be designed in an 
integrated fashion (Doyle and Pennotti 2006). Questions such as how to flow non-functional 
requirements down to components, how to predict system behavior, and how to verify system 
performance are complicated by the interrelationship and interaction between hardware and 
software.   
The three types of systems are illustrated in Figure 1. 



 

  

 
Figure 1. The three types of systems 

 
The traditional response to suggestions that SE should be integrated with SwE is that SwE is 
just another specialty engineering discipline. At a briefing of some of these concepts to the 
Corporate Advisory Board at the 2008 INCOSE conference in Utrecht, several systems 
engineers strongly stated that this was indeed the case, and that the integration of SE and 
SwE should be the job of the chief systems engineer. Others suggested that it was more 
appropriate to include software as only one of several disciplines that should be “integrated.” 
Not surprisingly, the one point upon which there was general agreement, was that SwE 
certainly needed more SE discipline. 
To all these comments, except for SwE needing more SE, we respectfully disagree. While the 
comments may have been true five or more years ago, they reflect relationships 
fundamentally different from those in the interdependent systems currently being created and 
envisioned. We assert the following:  

• Interdependent systems are those where: 

o A "major" portion of the capabilities/value of the system is delivered through 
software 

o A "major" portion of system quality attributes "largely" depend on software (safety, 
security, agility, reliability, availability, resilience, ...) 

• Today almost all high value systems meet these criteria and the percentage is increasing 

• In such interdependent systems, almost all important decisions require equal consideration 
of SwE and SE expertise, including those associated with technical, management, personnel 
and customer concerns. 

• Decision making is supported by information drawn from the experience and competencies 
of the decision makers and the execution of engineering and management processes. Critical 
decisions in interdependent systems are made most effectively by people who have strong 
SwE and SE competencies and experience and who have information from both SE and SwE 
processes. 

• Left as independent processes, systems and software decisions are more likely to be made 
without complete understanding or in temporal displacement leading to poor results or 
missed opportunities downstream.   

 
In a world of interdependent systems, practicing SE and SwE as completely distinct 
disciplines is harmful. The requisite security, safety, maintainability, and other critical 
attributes of high-value, high-quality systems demand that the interplay between these two 



  

disciplines is well understood, measured, and continuously improved. Therefore, we believe 
that it is essential that the SE and SwE disciplines, as represented by their bodies of 
knowledge and processes, be rapidly and effectively integrated. 

Software Engineering as Pioneer 
Before considering the challenges to integration, it may be useful to consider how SwE 
evolved as a discipline. In his keynote address to the initial convocation of the University of 
Southern California’s Center for Systems and Software Engineering, William Wulf, past 
president of the National Academy of Engineering, made the observation that systems 
engineers should look at SwE for guidance in adapting to the new realities of system design. 
He pointed out that with custom-engineered materials, nanotechnology and other advances, 
the “near-infinite, non-physically limited” solution space of software may be on the cusp of 
applying to systems. 

In his ICSE 2006 keynote paper “A View of 20th and 21st Century Software Engineering,” 
Barry Boehm provided a detailed description of SwE history (Boehm 2006).  He describes 
the evolution of the discipline in term of Hegel’s cycles of human understanding: ideas 
(thesis), different ideas when the original doesn’t quite work (antithesis), and hybrid solutions 
(synthesis). Table 1 summarizes this brilliant paper. 
 

Table 1. Boehm’s Hegellian History of Software Engineering 
Decade  Concept  Description 

1950’s Thesis: Software 
Engineering Is Like 
Hardware Engineering 

High cost of computer time (300 times developer’s salary); 
software developers were mathematicians, physicists and 
hardware engineers; software functionality primarily algorithms 

1960’s Antithesis: Software 
Crafting 

Ease of modification led to code and fix; more people-intensive 
systems; software reliability and maintenance differ from 
hardware; developers no longer scientists and engineers – 
“cowboy programmers” become role models 

1970’s Synthesis and 
Antithesis: Formality 
and Waterfall Processes 

Reaction to synthesize hardware techniques into software 
engineering; Royce’s waterfall diagram; quantitative approaches; 
short-lived formal approaches; software costs exceeding 
hardware costs 

1980’s Synthesis: Productivity 
and Scalability 

Initiatives to address 70’s problems; Standards (DoD-STD-2167, 
MIL-STD-1521, ISO-9000); Capability Maturity Model 
(SW-CMM); integrated tool environments; software factories; 
reuse approaches; “No silver bullet” paper 

1990’s Antithesis: Concurrent 
vs. Sequential 
Processes 

Emphasis on time-to-market; COTS; concurrency of engineering 
activities; I’ll Know It When I See It (IKIWISI) requirements; 
risk-driven spiral; Rational Unified Process; Open Source; 
emphasis on human-computer interface 

2000’s Antithesis and Partial 
Synthesis: Agility and 
Value 

Pace of change accelerates; frustration with heavy process leads 
to agile approaches and value-based SwE; software ubiquity and 
criticality raises dependability issues; COTS, Open Source and 
legacy software become significant productivity drivers; 
model-based development paradigm; realization of SE/SwE 
interactions 

 
As you can see, SwE has had a colourful and often amnesiac evolution. Much less than SE, 
SwE has had to significantly change its mental models and goals to cope with rapidly 
changing technology capabilities, infrastructure and system expectations. One good reason 
for integrating SE and SwE is to take advantage of these experiences and avoid some of the 
historical software engineering mistakes.  



 

  

Challenges to Integration 
Historical and cultural barriers and technical issues make integrating the two disciplines 
challenging.  Historical context and vestigial prejudices are significant barriers. SE and SwE 
cultures are significantly different due to the personality, background and approaches of 
practitioners. The normal educational background for each discipline is significantly 
different. Systems engineers are generally developed out of traditional engineering 
disciplines and so have more of the traditional engineering knowledge and skills 
(thermodynamics, control theory, stresses, …). Software engineers, although often drawn 
from mathematics or computer science curricula, are more likely to have been initially 
trained in a liberal arts and sciences program.  The software viewpoint is based on an 
unlimited, essentially totally malleable solution space while systems engineers are limited by 
the laws of physical science. The correctness of complex software is essentially un-provable 
while systems engineers constantly wrestle with assuring safety, reliability and availability in 
deterministic environments. 

These barriers lead to four fundamental issues that must be addressed in order to successfully 
integrate these disciplines. 

Issue 1: Vocabulary. There is no precise way to talk about the integration of systems and 
software engineering. We need to make old terms precise and introduce new terms to enable 
clear conversations. Three examples illustrate the need for clarity: 

1. The phrase integration of systems and software engineering itself has no precise meaning. 

2. Object‐oriented methods for architecting software clash with structured methods common 
for architecting systems.  This is a clash in mental models. Systems and software engineers 
think about architecting differently. 

3. When companies independently define competency models for their SE and SwE workforce, 
that independence aggravates a communications gap between them. 

Introducing terms such as clash and gap in a well-defined way is essential to understanding 
the integration of SE and SwE.  

Issue 2: Measurement. There is no precise way to talk about how much integration there is 
between SE and SwE in a particular situation. Without a way to quantify the amount of 
integration, it is hard to understand what to change and what the impact of a change is. For 
example, if a company introduces a requirement that all systems engineers have at least a 
journeyman’s knowledge of SwE, have they added a “little integration” or “a lot”? 
Issue 3: Entanglement. There is no way to simultaneously understand the many ways in 
which the SwE and SE disciplines touch. SE and SwE are large complex disciplines. For 
example, the IEEE Software Engineering Body of Knowledge, which defines the structure 
and top-level content of SwE, is more than 200 pages long. (Abran, et al 2004). The INCOSE 
SE Body of Knowledge is similarly long and complex (INCOSE 2004). A way to 
simultaneously decompose SE and SwE is required; e.g., by using ISO 15288 (ISO/IEC 
2008) which defines 25 different high-level processes that both disciplines use.  

Issue 4: Value.  There is no comprehensive list of benefits that can be achieved by integrating 
SwE and SE nor is there an understanding of the associated costs. 

Achieving and maintaining integration will not be either easy or free. The associated set of 
costs must be understood so the business case for integration can be made and integration 
activities can be prioritized by the value they deliver. 



  

Touchpoint: A Framework for Describing Integration 
A framework is a conceptual structure used to address complex issues. Our framework, 
Touchpoint, focuses on the issues surrounding the integration of SwE and SE for 
interdependent systems. As shown in Figure 2, our framework has four primary components: 
Processes, Touchpoints, Faults, and Resolution Strategies. 

 
Figure 2. The Touchpoint Framework 

 
Processes. These are the ordered activities that define the systems and software engineering 
disciplines. As identified in Issue 3, SE and SwE are each large complex disciplines. 
Fortunately, the new version of ISO 15288 provides a common way to structure SE and SwE 
via 25 processes, gathered into four process groups as shown in Table 2. 
 

Table 2.   The 25 ISO 15288 Processes 

Process Group  Process  Process Purpose 

Acquisition 
Obtain a product or service in accordance with the acquirer’s 
requirements 

Agreement 
Supply 

Provide an acquirer with a product or service that meets agreed 
requirements 

Life Cycle Model 
Management 

Define, maintain, and assure availability of policies, life cycle 
processes, life cycle models, and procedures for use by the 
organization with respect to the scope of 15288 

Infrastructure 
Management 

Provide the enabling infrastructure and services to projects to 
support organization and project objectives throughout the life 
cycle 

Project Portfolio 
Management 

Initiate and sustain necessary, sufficient, and suitable projects in 
order to meet the strategic objectives of the organization 

Human 
Resource 
Management 

Ensure the organization is provided with necessary human 
resources and to maintain their competencies, consistent with 
business needs 

Organizational 
Project-Enabling 

Quality 
Management 

Assure that products, services, and implementations of life cycle 
processes meet organization quality objectives and achieve 
customer satisfaction 

Project Planning  Produce and communicate effective and workable project plans Project 

Project 
Assessment and 
Control 

Determine the status of the project and direct project plan 
execution to ensure that the project performs according to plans 
and schedules, within projected budgets, to satisfy technical 



 

  

Table 2.   The 25 ISO 15288 Processes 

Process Group  Process  Process Purpose 
objectives 

Decision 
Management 

Select the most beneficial course of project action where 
alternatives exist 

Risk 
Management 

Identify, analyze, treat, and monitor the risks continuously 

Configuration 
Management 

Establish and maintain the integrity of all identified outputs of a 
project or process and make them available to concerned parties 

Information 
Management 

Provide relevant, timely, complete, valid, and, if required, 
confidential information to designated parties during and, as 
appropriate, after the system life cycle 

 

Measurement 

Collect, analyze, and report data relating to the products 
developed and processes implemented within the organization, to 
support effective management of the processes, and to 
objectively demonstrate the quality of the products 

Stakeholder 
Requirements 
Definition 

Define the requirements for a system that can provide the 
services needed by users and other stakeholders in a defined 
environment 

Requirements 
Analysis 

Transform the stakeholder, requirement‐driven view of desired 
services into a technical view of a required product that could 
deliver those services 

Architectural 
Design 

Synthesize a solution that satisfies system requirements 

Implementation  Realize a specified system element 
Integration  Assemble a system that is consistent with the architectural design 

Verification 
Confirm that the specified design requirements are fulfilled by the 
system 

Transition 
Establish a capability to provide services specified by stakeholder 
requirements in the operational environment 

Validation 
Provide objective evidence that the services provided by a system 
when in use comply with stakeholders’ requirements, achieving 
its intended use in its intended operational environment 

Operation  Use the system in order to deliver its services 
Maintenance  Sustain the capability of the system to provide a service 

Technical 

Disposal  End the existence of a system entity 

 

An organization developing, maintaining, or disposing of an interdependent system executes 
these 25 SE processes and 25 SwE processes.  Of course, the organization may not document, 
explicitly acknowledge, consistently or adequately perform these processes – but they do 
perform them.  Each process contains constituent activities that are executed by engineers, 
analysts, managers, and others.  
Touchpoints. We say that two processes touch when interactions between their constituent 
activities affect program risk or value – positively or negatively. We call this a touchpoint. 
For example, properly verifying an interdependent system requires verifying the system’s 
software. If a system verification process has explicit activities that interact with software 
verification activities, then the systems verification process and the software verification 
process touch and we can define at least one touchpoint for each “touching” activity. 
Faults. Touchpoints are not always implemented well. A touchpoint may exist, but the 
process or activity may fail to produce its maximum value. The framework defines these 
shortcomings as faults. Three types of faults are defined in Table 3.  



  

 
Table 3.  Three Types of Faults in SE/SwE Integration 

Fault Type  Description 

Gap 
Logically, there should be an interaction between the corresponding SE and SwE 
processes, but the processes do not include one. A needed activity is therefore 
performed poorly, or not performed at all.  

Clash 
One or more activities in each of the two corresponding SE and SwE processes produce 
are incompatible and result in inconsistent results or inconsistent actions. 

Waste 
Activities in the two corresponding SE and SwE processes independently expend 
resources that produce the same result or take the same action with no added benefit 
to the program 

 

A poor system verification process could (1) pretend that software errors do not affect system 
correctness, or (2) systematically underestimate the time it will take to properly test software 
or the complexity of such testing, or (3) independently redo the same testing that the software 
verification process does. Each of these examples is a fault in the integration of SE and SwE, 
which we associate with the system and software verification processes. The first fault would 
be a gap between the two processes. The processes should touch, but do not because those 
who define or execute the processes do not understand the need.  Consequently, important 
verification activities will not be performed. The second fault would be a clash between the 
two processes. Each process has its own estimation method, and those methods produce 
inconsistent results. The third fault would be a waste between the two processes. Clashes can 
be further characterized as resulting from differences in vocabulary, value, or mental model, 
as shown in Table 4. 

 

Table 4.  Types of Clashes 

Clash Type  Description 

Vocabulary 

Touching SwE and SE processes or their constituent activities use the same 
terminology with different meanings, or terms not recognized by the other, making 
communication between software and systems engineers harder; e.g., traditional SE 
requirements methods are not object‐oriented and therefore do not include such 
terms as “inheritance” or “class hierarchy,” both of which are common in SwE 
object‐oriented requirements methods. 

Value 
Software and systems engineers in an organization or program value different 
process characteristics; e.g., a systems engineer may value a stable baseline while a 
software engineer may value a rapidly evolving and flexible baseline.  

Mental Model 
Software and systems engineers think differently about how to carry out process 
activities; e.g., systems architecting methods most often define “part‐of” 
relationships while software architectures primarily define “uses” relationships.  

 

Touchpoints and their faults are specific to an organization or project’s performed process. 
However, as shown in Table 5, it is possible (and valuable) to identify and describe some 
relatively common process touchpoints and their faults. 
 



 

  

Table 5.  Example Touchpoint 

Process  Touchpoint  Fault  Type 

Architectural 
Design 

Systems architectures 
include significant 
software components to 
deliver critical capability 

Software architectures 
define layers of related 
functionality, while most 
methods for systems 
architectures create 
hierarchical structures.  

Clash – Mental 
Model  

 

Resolution Strategies. Naturally, when faults are unearthed, there is a desire to fix them, 
especially those with high impact on risk or value. For each fault, there may be one or more 
resolution strategies, which, when executed well, will eliminate the fault or at least reduce its 
impact.  In some cases, resolution strategies are known and just need to be applied; on the 
other hand, resolving some faults will require research. 
In the Touchpoint framework, resolution strategies are grouped into four traditional 
categories: process, people, environment, and technology.  Any number of resolution 
strategies in each category is possible for a fault.  Table 6 presents resolution strategies for 
the touchpoint/fault in Table 5.  The first resolution strategy is the opinion of the authors 
based on their understanding of the field.  The last two resolution strategies, shown in italics, 
came directly from interviews with practitioners on programs that had used those strategies 
successfully. 

 
Table 6.  Resolution Strategies 

 

Applying the Framework: Early Pilot Experience 
The authors piloted Touchpoint to explore its explanatory value. A stated earlier, while 
touchpoints may be defined generically, they exist in the actual SE and SwE processes on 
real programs. Since most activities with possible touchpoints occur at a level below much of 



  

the typical process documentation, pilot activity needed to engage practitioners to identify 
touchpoints. To this end, 1-hour interviews were conducted with a group of systems and 
software engineering leaders for each of 9 defence programs across a variety of domains, 
complexity, size, and developer. We also interviewed a key member of the Office of the 
Secretary of Defence (OSD), which has performed systemic analysis of data collected during 
more than 50 program reviews. 

In the analysis of the interviews, touchpoints were identified in three ways. First, something 
was described as a touchpoint by one of the interviewees. Second, a problem might have 
surfaced that implied the existence of a touchpoint. Third, an interviewee may have described 
a strategy taken when solving a specific problem that implied a touchpoint. Table 7 is an 
overview of the touchpoints identified, organized by issue category. In counting the number 
of projects, the interview with OSD was considered a single project. The complete set of 
touchpoints can be found in Appendix A [<To be supplied in final paper>]. 
 

Table 7.  Summary of Touchpoints 

Category Touchpoints No. of Projects 

Architecture 12 6 

CM 1 1 

EVM 2 2 

Human Capital 4 2 

Process Planning 3 3 

Requirements 23 10 

Risk Management 2 2 

System Integration 4 4 

Software Metrics (Visibility) 4 3 

Contracting 4 3 

Life Cycle 7 4 

Technical Reviews 2 2 

 

Conclusions and Recommendations. In general, the framework did a good job of capturing 
real experiences from programs and provided a reasonable vocabulary to discuss integration 
of the two disciplines.  However, we believe that the data collected so far only scratches the 
surface of what is required.  While we did identify a good number of touchpoints that could 
be assigned to the various categories, the limited amount of time available for interviews 
often resulted in a conversation focused on only one or two areas. Moreover, even with clear 
non-attribution, it was frequently difficult for interviewees to discuss ongoing problems in an 
interview, leading to a preponderance of identifications based on resolution strategies, rather 
than on issues. 
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