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Abstract.  The Incremental Commitment Model (ICM) organizes systems engineering and 
acquisition processes in ways that better accommodate the different strengths and difficulties 
of hardware, software, and human factors engineering approaches.  As with other models 
trying to address a wide variety of situations, its general form is rather complex.  However, its 
risk-driven nature has enabled us to determine a set of twelve common risk patterns and 
organize them into a decision table that can help new projects converge on a process that fits 
well with their particular process drivers.  For each of the twelve special cases, the decision 
table provides top-level guidelines for tailoring the key activities of the ICM, along with 
suggested lengths between each internal system build and each external system increment 
delivery.  This paper elaborates on each of the twelve cases and provides examples of their use.  

Introduction 

The Incremental Commitment Model (ICM), developed in a recent National Research Council 
study on integrating human factors into the systems development process, organizes systems 
engineering and acquisition processes in ways that better accommodate the different strengths 
and difficulties of hardware, software, and human factors engineering approaches.  It also 
provides points at which they can synchronize and stabilize.  At these points, the risks of going 
forward can be better assessed and fitted into a risk-driven stakeholder resource commitment 
process. 

As with other models trying to address a wide variety of situations, its general form is rather 
complex.  However, its risk-driven nature has enabled us to determine a set of common risk 
patterns and organize them into a decision table that can help new projects converge on a 
process that fits well with their particular process drivers. 

The process drivers used as inputs to the decision table include the system’s size and 
complexity; its rate of change; its mission-criticality; the extent of non-developmental item 
(NDI) support for its desired capabilities; and the available organizational and personnel 
capability for developing the system. 

The decision table includes twelve common risk-driven special cases of the ICM.  With 
representative examples in parentheses, these are (1) Use NDI (Small accounting system); (2) 
Agile (Small e-services); (3) Architected agile (Business data processing); (4) Formal methods 
(Large-Scale Integration (LSI) chip; security kernel); (5) Software-embedded hardware 
component (Multi-sensor control device); (6) Indivisible initial operational capability 
(Complete vehicle platform); (7) NDI-intensive system (Supply chain management); (8) 
Hybrid agile/plan-driven system (Command, Control, Computing, Communications, 
Intelligence, Surveillance, Reconnaissance (C4ISR) system); (9) Multi-owner system of 
systems (SoS) (Net-centric emergency services); (10) Family of systems (Medical device 
product line), (11) Brownfield (Incremental legacy phaseout); (12a) Net-centric 
services—community support (Community services); and (12b) Net-centric services—quick 



  

response decision support (Response to competitor intiative).  The following sections of this 
paper elaborate on each of the twelve cases and provide examples of their use. 

ICM Background 

The ICM, illustrated in Figure 1, is a risk-driven framework for tailoring system life-cycle 
processes.  The ICM uses risk to determine how much process agility or rigor is enough to 
satisfy the system’s objectives subject to its constraints.  This may vary across different parts of 
the system, depending on the risks associated with the various parts.  And for SoSs, where the 
component systems are owned and maintained by different organizations, this variation is often 
unavoidable. 

 

 

Figure 1. Overview of the ICM. 

 

Figure 1 identifies the concurrently engineered life cycle phases, the stakeholder commitment 
review points and their use of feasibility rationales to assess the compatibility, feasibility and 
risk associated with the concurrently-engineering artifacts; and the major focus of each life 
cycle phase.  There are a number of alternatives at each commitment point.  These are: (1) the 
risks are negligible and no further analysis and evaluation activities are needed to complete the 
next phase; (2) the risk is acceptable and work can proceed to the next life cycle phase: (3) the 
risk is addressable but requires backtracking; or (4) the risk is too great and the development 
process should be rescoped or halted. These risks are assessed by the system’s success-critical 
stakeholders, whose commitment will be based on whether the current level of system 
definition gives sufficient evidence that the system will satisfy their value propositions.  Thus 
there are many risk-driven paths through the life cycle.  A more risk-seeking set of stakeholders 
will tend to go forward or skip phases at a decision point; for the same level of risk, a more 



 

  

risk-averse set of stakeholders may choose to extend the previous phase, rescope, or 
discontinue the project. 

The ICM pulls together and integrates a) agile processes for assessing the system environment 
and user needs and then planning for the implementation of new and modified system 
capabilities, b) plan-driven (often time-boxed) processes to develop and field new capabilities, 
and c) continuous verification and validation (V&V) to provide high assurance of the requisite 
system qualities.  The ICM also strives to integrate key engineering disciplines (e.g., systems, 
software, human factors) to develop desired systems and system capabilities in a 
cost/schedule-effective manner and to support the evolution of these systems over time to meet 
changing user needs.  The ICM is based upon the premises that many systems of today contain 
a significant amount of software, the requirements for these systems cannot be specified up 
front, and the requirements associated with these systems can and do change over time.  A key 
to success is building in system adaptability and flexibility—and software is often the enabler 
for this needed adaptability and flexibility. 

Essential to the ICM are its six core principles:  1) commitment and accountability of system 
sponsors, 2) success-critical stakeholder satisficing, 3) incremental growth of system definition 
and stakeholder commitment, 4) concurrent engineering, 5) iterative development cycles, and 
6) risk-based activity levels and milestones. 

The overall lifecycle process divides naturally into two major stages.   Stage I, Incremental 
Definition, covers the up-front growth in system understanding, definition, feasibility 
assurance, and stakeholder commitment leading to a larger Stage II commitment to a feasible 
set of specifications and plans for Incremental Development and Operations. 

To focus on all of the key aspects of a given software-intensive system requires that a great deal 
of concurrent activity occurs within and across the various ICM phases (Pew and Mavor, 
2007).  Figure 2 illustrates some of this concurrency and the associated levels of effort. 

In order to rapidly and successfully adapt to increasing rates of change, projects need to be able 
to concurrently rather than sequentially assess and manage opportunities and risks; 
requirements, solutions, plans, and business cases; and hardware, software and human factors.  
Figure 2 builds on the Rational Unified Process “hump diagram” in [Kruchten 1999] to show 
how these are concurrently pursued with the ICM [Pew and Mavor 2007; Boehm and Lane 
2007]. 

As with the RUP version, it should be emphasized that the magnitude and shape of the levels of 
effort will be risk-driven and likely to vary from project to project.  In particular, they are likely 
to have mini risk/opportunity-driven peaks and valleys, rather than the smooth curves shown 
for simplicity in Figure 2. The main intent of this view is to emphasize the necessary 
concurrency of the primary success-critical activities shown as rows in Figure 2. Thus, in 
interpreting the Exploration column,  although system scoping is the primary objective of the 
Exploration phase, doing it well involves a considerable amount of activity in understanding 
needs, envisioning opportunities, identifying and reconciling stakeholder goals and objectives, 
architecting solutions, life cycle planning, evaluation of alternatives, and negotiation of 
stakeholder commitments. 

 



  

 

 

Figure 2.  ICM Concurrent Activities and Level of Effort. 

 

For example, if one were exploring the initial scoping of an SoS for a metropolitan area’s 
disaster relief, one would not just interview a number of stakeholders and compile a list of their 
expressed mission needs:  One would also envision and explore opportunities for reusing (parts 
of) other metropolitan-area disaster relief systems; for obtaining development funds from 
federal agencies; and for applying maturing virtual collaboration technologies.  In the area of 
understanding needs, one would concurrently assess the capability and compatibility of 
existing disaster relief systems in the metropolitan area to determine which would need the 
most work to re-engineer into a SoS.  One would also assess the scope of authority and 
responsibility of each existing system to determine whether the best approach would be a truly 
integrated and centrally-managed SoS or a best-effort interoperable set of systems.  And one 
would explore alternative architectural concepts for developing and evolving the system; 
develop alternative phased plans to determine which improvements would provide the best 
early benefits and foundations for future growth;  evaluate their relative feasibility, benefits, 
and risks for stakeholders to review; and negotiate commitments of further resources to 
proceed into a Valuation phase. Similar concurrency is needed all the way down to small 
time-constrained web applications. 

To make this concurrency work, the anchor point milestone reviews are the mechanism by 
which the many concurrent activities are synchronized, stabilized, and risk-assessed at the end 



 

  

of each phase.  Each of these anchor point milestone reviews, labeled at the top of figures 1 and 
2, is focused on developer-produced evidence, instead of PowerPoint charts and Unified 
Modeling Language (UML) diagrams, to help the key stakeholders determine the next level of 
commitment. For the Exploration Commitment Review (ECR), the focus is on a review of an 
Exploration Phase plan with the proposed scope, schedule, deliverables, and required resource 
commitment, by a key subset of stakeholders.  The plan content is risk-driven, and could 
therefore be put on a single page for a small and non-controversial Exploration phase since 
there is minimal risk at this point—a much riskier Exploration phase would require a more 
detailed plan outlining how the risks will be re-evaluated and managed going forward. For the 
Valuation Commitment Review (VCR), the risk-driven focus is similar; the content includes 
the Exploration phase results and a valuation phase plan; and a review by all of the stakeholders 
involved in the Valuation phase.  The Foundations Commitment Review (FCR) and the 
Development Commitment Review (DCR) reviews are based on the highly successful AT&T 
Architecture Review Board procedures described in (Marenzano et al., 2005). For the FCR, 
only high-risk aspects of the Operational Concept, Requirements, Architecture, and Plans are 
elaborated in detail.  At this point, typically multiple options have been investigated and it is 
sufficient to provide evidence that at least one combination of the possible options is feasible.   
At the DCR, feasibility is demonstrated for a particular the option set selected for development. 

ICM Process Decision Table 

Because of its complexity, ICM examples have been developed to show users how to use the 
framework to create a development process appropriate for their system of interest.  These 
cases cover the very small to the very large as well as the use of commercial off-the-shelf 
(COTS) software products to the development of a large, complex custom software application 
or integrated sets of software applications.  Each of these situations presents risks at the various 
stages of development, some risks more critical than others.  The goal of the ICM is to identify 
these risks and then tailor the process to include rigor where necessary to investigate and 
manage the risks and to streamline the process when risks are negligible, allowing the 
development team to be more agile when possible.  Table 1 contains a list of the special cases 
of the ICM and an example of each case.  These cases cover a broad spectrum of 
software-intensive systems.  In addition, Table 1 describes the characteristics of the case (or 
application category) with respect to size and complexity; expected change rate during the 
development process; the overall criticality of the application, typically as it applies to human 
life, security/protection of information, or financial liability; and the type of NDI support one 
might expect for an application in this category.  It also indicates the organizational and 
personally capabilities that are required to be successful at building this type of application and 
the typical/suggested lengths for each internal system build and each external system 
increment delivery.  Table 2 provides top-level guidelines for tailoring the key activities in 
Stage I (incremental definition) and Stage II (incremental development and operations) of the 
ICM. 

 



  

Table 1: Characteristics of the Risk-Driven Special Cases of the ICM. 

Special Case Example 
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1.  Use NDI Small 
accounting 

   Complete   

2.  Agile E-services Low 1-30 Low-Med Good; in 
place 

Agile-ready 
Med-high 

<= 1 day;  

2-6 weeks 

3.  Architected 
Agile 

Business data 
processing 

Med 1-10 Med-High Good; most 
in place 

Agile-ready 
Med-high 

2-4 weeks;  

2-6 months 

4.  Formal 
Methods 

Security 
kernel; 
Safety-critical 
LSI chip 

Low 0.3 Extra 
High 

None Strong formal 
methods 
experience 

1-5 days; 

1-4 weeks 

5.  HW with 
embedded SW 
component 

Multi-sensor 
control device 

Low 0.3-1 Med-Very 
High 

Good; in 
place 

Experienced; 
med-high 

SW: 1-5 days;  

Market-driven 

6.  Indivisible IOC Complete 
vehicle 
platform 

Med-
High 

0.3-1 High- 
Very High 

Some in 
place 

Experienced; 
med-high 

SW: 2-6 weeks;  

Platform: 6-18 
months 

7.  NDI- intensive Supply chain 
management 

Med-
High 

0.3-3 Med-Very 
High 

NDI-driven 
architecture 

NDI- 
experienced; 
med-high 

SW: 1-4 weeks; 

Systems:  6-18 
months 

8.  Hybrid agile/ 
plan-driven 
system 

C4ISR system Med-
Very 
High 

Mixed 
parts; 
1-10 

Mixed 
parts; 
Med-Very 
High 

Mixed parts Mixed parts 1-2 months;  

9-18 months 

9.  Multi-owner 
system of systems 

Net-centric 
military 
operations 

Very 
High 

Mixed 
parts; 
1-10 

Very High Many NDIs; 
some in 
place 

Related 
experience, 
med-high 

2-4 months;  

18-24 months 

10.  Family of 
systems 

Medical 
device 
product line 

Med-
Very 
High 

1-3 Med-Very 
High 

Some in 
place 

Related 
experience, 
med-high 

1-2 months;  

9-18 months 

11.  Brownfield Incremental 
legacy 
phaseout 

High-
Very 
High 

0.3-3 Med-High NDI as 
legacy 
replacement 

Legacy 
re-engineering 

2-6 weeks/ 
refactor ;  

2-6 months 

12a.  Net- Centric 
Services— 
Community 
Support 

Community 
Services or 
Special 
Interest Group 

Low-
Med 

0.3-3 Low-Med Tailorable 
service 
elements 

NDI- 
experienced 

<= 1 day; 

6-12 months 

12b.  Net-Centric 
Services—Quick 
Response 
Decision Suppport 

Response to 
competitor 
initiative 

Med-
High 

3-30 Med-High Tailorable 
service 
elements 

NDI- 
experienced 

<= 1 day ; 

QR-driven 

Legend:   

C4ISR:  Command, Control, Computing, Communications, Intelligence, Surveillance, Reconnaissance; HW:  Hardware; 

IOC:  Initial Operational Capability; NDI:  Non-Development Item; SW:  Software. 

 



 

  

Table 2: Key Activities for Each Special Case of the ICM. 

Special Case Example 
Key Stage I Activities:  

Incremental Definition 

Key Stage II Activities:  

Incremental Development, 

Operations 

1.  Use NDI Small accounting Acquire NDI Use NDI 

2.  Agile E-services Skip Valuation, Architecting phases Scrum plus agile methods of choice 

3.  Architected Agile Business data 
processing 

Combination Valuation, 
Architecting phases.  Complete NDI 
preparation 

Architecture-based Scrum of Scrums 

4.  Formal Methods Security kernel; 
Safety-critical 
LSI chip 

Precise formal specification Formally-based programming 
language; formal verification 

5.  HW with 
embedded SW 
component 

Multi-sensor 
control device 

Concurrent HW/SW engineering.  
CDR-level ICM DCR 

IOC Development, LRIP, FRP.  
Concurrent version N+1 engineering 

6.  Indivisible IOC Complete vehicle 
platform 

Determine minimum-IOC likely, 
conservative cost.  Add deferrable 
SW features as risk reserve 

Drop deferrable features to meet 
conservative cost.  Strong award fee 
for features not dropped 

7.  NDI- intensive Supply chain 
management 

Thorough NDI-suite life cycle 
cost-benefit analysis, selection, 
concurrent requirements/ 
architecture definition 

Pro-active NDI evolution 
influencing, NDI upgrade 
synchronization 

8.  Hybrid agile/ 
plan-driven system 

C4ISR system Full ICM; encapsulated agile in high 
change, low-medium criticality parts 
(Often HMI, external interfaces) 

Full ICM, three-team incremental 
development, concurrent V&V, 
next-increment rebaselining 

9.  Multi-owner 
system of systems 

Net-centric 
military 
operations 

Full ICM; extensive multi-owner 
team building, negotiation 

Full ICM; large ongoing 
system/software engineering effort 

10.  Family of systems Medical device 
product line 

Full ICM; Full stakeholder 
participation in product line scoping.  
Strong business case 

Full ICM.  Extra resources for first 
system, version control, 
multi-stakeholder support 

11.  Brownfield Incremental 
legacy phaseout 

Re-engineer/refactor legacy into 
services 

Incremental legacy phaseout 

12a.  Net-Centric 
Services— 
Community Support 

Community 
Services or 
Special Interest 
Group 

Filter, select, compose, tailor NDI Evolve tailoring to meet community 
needs 

12b.  Net-Centric 
Services—Quick 
Response Decision 
Suppport 

Response to 
competitor 
initiative 

 Filer, select, compose, tailor NDI Satisfy quick response; evolve or 
phase out 

Legend:   
C4ISR:  Command, Control, Computing, Communications, Intelligence, Surveillance, Reconnaissance; CDR:  Critical 
Design Review; DCR:  Development Commitment Review; FRP:  Full-Rate Production ;  HMI:  Human-Machine 
Interface ; HW:  Hardware; IOC:  Initial Operational Capability; LRIP:  Low-Rate Initial Production; NDI:  
Non-Development Item; SW:  Software; V&V:  Verification and Validation. 

Using the Process Decision Tables 

Selecting and Tailoring a Decision Table Case.  The general ICM chart has many decision 
options available, but its risk-driven approach results in most projects having simpler special 
cases that can usually be determined during the project’s Exploration phase.  The decision table 
indicates the most common special cases.  But it is not exhaustive.  If your risk pattern is not 



  

included, look at the closest approximation to it, and think through an appropriate risk-driven 
variant of it. 

Even if your pattern is included in the table, there may be special aspects of your project that 
require additional tailoring (e.g., multiple cultures, distant time zones, legacy constraints).  The 
decision table should be a stimulus to thinking, not a substitute for it.  In addition, many 
complex projects have simpler pieces in them.  Rather than apply a one-size-fits-all process to 
all of them, often you can architect the system to use simpler processes on the simpler parts. 

The rest of this section describes each of the ICM special cases and typical risks associated 
with each case. 

Case 1:  Use NDI (Non-Development Items).  Suppose you have an application for which an 
appropriate NDI (COTS, open source, reuse library, customer-furnished package) solution is 
available, and other options of developing perhaps a better version yourself or outsourcing 
such a development.  Even if you produce a better solution (frequently not the case), you will 
generally incur more expense and take longer to begin to capitalize on its benefits. And you 
will often find that the NDI package has features that you hadn’t realized you would need, but 
are there when you need them. 

On the other hand, there are risks that may disqualify some NDIs.  They may be overly 
complex for your needs, incompatible with your other applications, or highly volatile.  See the 
discussion in Section 33.1 of Software Engineering Economics (Boehm, 1981) for more about 
the pros and cons of NDI solutions. 

Case 2:  Pure Agile Methods.  If your project is small (less than 10 people) and its criticality 
involves the loss of discretionary vs. essential funds, a pure agile method such as Extreme 
Programming (Beck, 1999), Scrum (Schwaber, 2002), or Crystal (Cockburn, 2002) is generally 
best if you have relatively high-capability, agile-ready personnel.  The risks of using a more 
formal, plan-driven approach are less adaptability to change and belated feedback on the 
product’s capabilities.  The biggest risk is to try to develop the application all at once for 
several months, and then find that it is a mismatch to the users’ needs.  Agile developers have 
found that the best way to address this risk is to organize the project into short (2-6 week) 
delivery increments that may be incomplete, but provide early useful capabilities.  Any flaws 
can then be detected early and fixed in the next increment (for very high criticality applications, 
this would not be acceptable).  On a small project it is also easy to set up a daily build and 
regression test structure that identifies integration problems early when they are easier to fix. 

Some risks of using the agile approach is that it is harder to write a contract for what is being 
developed; that it may sub optimize for early success by using unscalable capabilities 
(fourth-generation languages, running all in main memory); or high personnel turnover.  See 
(Boehm and Turner, 2004), pp. 121-128 for an example risk analysis of an agent-based event 
planning system, ending with a decision to go agile. 

Case 3:  Architected Agile.  For medium-size (20-80 people), medium complexity 
(reasonably mature and scalable technology; largely compatible shareholders), agile methods 
can be scaled using an Architected Agile approach with early investment in a largely 
change-prescient architecture and user/developer/customer team building.  For relatively stable 
projects (0.3-1% change/month), plan-driven methods can be used with low risk.  But for 
higher rates of changes (1-10%/month), a more agile approach is less risky.  A risk analysis of 
a 50-person, medium sized architecture-based agile supply chain management project is 
provided on pages 106-121 of (Boehm and Turner, 2004).  A number of organizations in such 
areas as corporate infrastructure, medical, aerospace, and ERP applications have reported 
significant gains in adaptability and quality of the Architected Agile approach over plan-driven 



 

  

methods for such projects.  However, others that had less capable and agile-ready people, less 
management and customer commitment, and less up-front architecture investment have not. 
(Boehm, 2007) 

Case 4:  Formal Methods.  Formal methods involve the development and verification of a 
precise mathematical specification of the behavior of a hardware and/of software systems; an 
implementation of the system in formal-semantics-based languages; and a mathematical proof 
that the implementation is exactly equivalent to the specification (no more; no less).  Such 
methods are expensive relative to standard commercial practice and require scarce 
high-capability personnel, but are inexpensive relative to a massive product recall, expensive 
lawsuits, or a massive loss of valuable and confidential information. 

Current formal methods generally require repeating the expensive mathematical proof process 
whenever the specification or implementation is changed, making the approach less viable for 
systems with highly volatile requirements.  In general, non-developmental items are not 
precisely specified and verified enough to be safely used in such systems.  Also, formal 
methods have limited scalability; almost all fully-verified software systems have less than 
10,000 lines of code.  However, some progress is being made toward modularizing such 
systems so that implementations and proofs can be built up incrementally via lower-level 
lemmas and theorems. 

Case 5:  Software Embedded Hardware Component.  The application classes above have 
been mostly software-intensive.  The differences in economic and risk patterns for 
hardware-intensive projects (Boehm and Lane, 2007) will create different risk-based special 
cases of the ICM.  Once a project commits to a particular manufacturing approach and 
infrastructure, the hardware cost of change will be much higher.  And the primary costs at risk 
are in development and manufacturing, particularly if the component is cheaper to replace than 
to fix or if fixes can be accomplished by software workarounds.  Thus, the ICM Stage I 
activities of producing and validating detailed specifications and plans are much more 
cost-effective than for the agile cases above.  They will often go beyond the usual level of detail 
(Critical Design Review versus evidence-based Preliminary Design Review) for an ICM 
Development Commitment Review (DCR), since so many of the details are likely to be major 
sources of rework expenditures and delay if wrong.  And after Initial Operational Capability 
(IOC) development, the rework risks generally dictate an incremental low rate initial 
production phase before a full-rate production phase in Stage II.  In case the component is 
planned to evolve to subsequent hardware-software reconfigurations, the ICM approach of 
having a concurrent systems engineering team developing specifications and plans for the 
“N+1st “ increment could be adopted.  The length of these later increments will be driven by the 
product’s marketplace or competitive situation. 

Case 6:  Indivisible IOC.  More complex hardware intensive systems, such as aircraft, may 
have a great deal of software that can be incrementally developed and tested, but may have an 
indivisible hardware IOC that must be developed as a unit before it can be safely tested (e.g., an 
automobile or aircraft’s braking system or full set of safety-critical vehicle controls).  Relative 
to the cost and duration of the software increments, the indivisible hardware IOC has two 
significant sources of risk: 

• It cannot fit into smaller software increments 

• It cannot drop required hardware features to meet IOC schedule/cost/quality as 
independent variable. 

The first can be addressed by synchronizing the hardware IOC with the Nth software increment 
(e.g., (Rechtin and Maier, 1997) osculating orbits for hardware and software). 



  

If some combination of schedule/cost/quality is truly the project IOC’s independent variable, 
then one does not want to commit to a most-likely combination of schedule/cost/quality, as 
there will be a roughly 50% chance of an overrun or quality shortfall in completing the 
indivisible IOC.  Rather, it is better to determine a conservative IOC cost and schedule for 
meeting the quality objective, and use the difference between the conservative cost and 
schedule and the most-likely cost and schedule as a risk reserve.  The best way to do this is to 
use the conservative cost and schedule as the IOC target, and to determine a set of desired but 
non-essential, easy to drop software features that could be developed within the risk reserve.  
Then, if the most-likely indivisible IOC capability begins to overrun, some desired software 
features can be dropped without missing the scheduled delivery time and cost.  There should 
also be a strong award-fee incentive for the developers to minimize the number of features that 
need to be dropped. 

Case 7:  NDI-Intensive.  Our experiences in developing USC web-service applications 
between 1996 and 2004 was that they went from 28% of the application’s functionality being 
delivered by NDI components to 80% (Yang et al, 2005).  A similar trend was identified by the 
2001 Standish Report, which reported that 53% of the functionality of commercial software 
applications was being delivered by NDI components in 2000 (Standish, 2001). The economics 
of NDI-intensive systems dictates a bottom-up versus a top-down approach to system 
development, in which the capability envelope of the NDI determines the affordable 
requirements, rather than a top-down requirements-to-capability approach.  A large 
supply-chain management system may need to choose among several NDI candidates each for 
such functions as inventory control, trend analysis, supplier/customer relations management, 
transportation planning, manufacturing control, and financial transactions; and evaluate not 
only the candidates’ cost/performance aspects, but also their interoperability with each other 
and with the corporation’s legacy infrastructure.  Besides NDI assessment, other significant 
sources of effort can be NDI tailoring, NDI integration, and effect of NDI version volatility and 
obsolescence; see (Yang et al, 2005). 

A particular challenge in Stage II is the effect of NDI volatility and obsolescence.  Surveys 
have indicated that commercial NDI products have a new release about every 10 months, and 
that old releases are supported by the vendor for about 3 releases.  Some large systems have had 
about 120 NDI components, indicating that about 12 components will have new releases each 
month, and that not upgrading will leave each component unsupported in about 30 months.  In 
such cases, a great deal of attention needs to be paid to upgrade synchronization, and to 
pro-active NDI evolution influencing.  Some large organizations synchronize their NDI 
upgrades to their major re-training cycles of about 12-18 months.  For additional NDI best 
practices, see (Wallnau et al, 2002). 

Case 8:  Hybrid Agile/Plan-Driven System.  Some large, user-intensive systems such as 
C4ISR systems, air traffic control systems, and network control systems have a mix of 
relatively stable, high-criticality elements (sensors and communications; key business logic) 
and more volatile, more moderately critical elements such as GUI displays, electronic warfare 
countermeasures, and interfaces with externally evolving systems.  As many acquisitions of 
this nature have shown, it is highly risky to apply one-size-fits-all processes and incentive 
structures to these differing classes of elements.  Instead, in Stage I, it is important to determine 
which system elements belong in which class along with the other functions of understanding 
needs, envisioning opportunities, NDI assessment, scoping the system, and determining 
feasible requirements and increments performed for complex systems in Stage I; to architect 
the system to encapsulate the volatile parts for development by agile teams; and to organize to 
use plan-driven development for the other elements of the overall system.  In Stage II, the 



 

  

cycles for the agile teams are likely to be significantly shorter than those for the plan-driven 
teams. 

Case 9:  Multi-Owner System of System.  In this situation, your goal is to integrate a set of 
existing systems (or guide and evolve the integration of a set of existing systems).  These 
systems are primarily developed, owned, and maintained by an organization other than the one 
that is attempting to manage and guide the set of systems as a system of systems.  Because of 
the independence of these constituent systems, the SoS organization has little or no formal 
control over the processes used to maintain and evolve the constituent systems.  The SoS may 
be an enterprise wide business SoS, with the constituents being primarily COTS products along 
with some legacy applications.  Or it may be Department of Defense (DoD) warfighting SoS, 
where the constituent legacy systems are integrated to increase capabilities on the battle field. 

Traditional systems engineering (SE) activities are typically tailored for the SoS case to define 
an SoS architecture, better coordinate the activities of multiple systems in migrating to the SoS 
architecture, and provide synchronization points for the SoS.  In (OUSD AT&L, 2008), pilot 
studies have shown that many DoD SoS have re-organized the traditional SE activities into a 
set of seven core elements:  1) translating capability objectives, 2) understanding systems and 
relationships, 3) assessing performance to capability objectives, 4) developing, evolving, and 
maintaining SoS design, 5) monitoring and assessing changes, 6) addressing new requirements 
and options, and 7) orchestrating updates to SoS.  Further analysis shows, that these elements 
map fairly well to the hybrid agile/plan-driven case (Case 8) at the SoS level. 

What makes this case different from Case 8, is that each of the constituent systems is using 
their own processes, which could be any of the above cases, depending on the scope, 
complexity, and characteristics of the constituent system.  What is key is that the Case 9 
extends Case 8 to include information or participation of the constituent systems in the agile 
planning activities and lets the “battle rhythm” of the constituent system increments guide the 
SoS plan-driven and V&V activities. 

Case 10:  Family of Systems.  Families of systems are typically a set of systems that belong to 
a product line and can be easily used to customize a solution for a given need.  This might be a 
suite of medical devices or a suite of applications to customer support.  This is often the set of 
systems developed by a vendor that become the NDI components for CASE 7 above.  Again, 
the rigor required for the SoS case is present here.  However, in this situation, the family of 
systems is typically owned and evolved by a single organization/vendor and presents a case 
where the owning organization has much more control over the evolution of the components of 
the family of systems, thus possibly reducing some risks and allowing the ICM process to be a 
little more streamlined. 

Case 11:  Brownfield:  A Brownfield counterexample involved a major US corporation that 
used a Greenfield systems engineering and development approach to develop a new Central 
Corporate Financial System to replace a patched-together collection of strongly-coupled and 
poorly documented COBOL business data processing programs.  The system included an early 
Enterprise Resource Planning (ERP) system that was well matched to the corporation's overall 
financial needs, but not to its detailed business processes, which included various workarounds 
to compensate for difficulties with the legacy software.  The new system was well organized to 
support incremental implementation, but was dropped at a cost of $40 million after two failed 
tries to provide continuity of service, due primarily to the infeasibility of incrementally phasing 
out the legacy software and business processes compatibly with the new system's incremental 
capabilities. 



  

The ICM can be used to organize systems engineering and acquisition processes in ways that 
better support Brownfield legacy software re-engineering so that organizations can better 
provide continuity of services.   In particular, its concurrent activities of Understanding Needs, 
Envisioning Opportunities, System Scoping and Architecting, Feasibility Evidence 
Development, and Risk/Opportunity Assessment enable projects to focus specifically on their 
legacy system constraints and on opportunities to deal with them. 

The application of the ICM to the Brownfield corporate counterexample situation would have 
avoided the failures of the Greenfield development.  Its Understanding Needs activity would 
have determined the ways in which the legacy system had intertwined financial and other 
business services.  For examples, Project Services included budgeting and scheduling, work 
breakdown system accounting, earned value management intertwined with requirements, 
version and configuration management; Contract Services included expenditure category 
management, billing, and receivables management intertwined with deliverables management 
and engineering change proposal tracking; with similar intertwining in Personnel Services and 
Marketing Services. 

The ICM's Envisioning Opportunities activity would have identified opportunities to use 
large-scale refactoring methods to decouple the financial and non-financial elements of these 
services in ways that would make it feasible for them to interoperate with a Financial Services 
element.  Its System Scoping and Architecting activity would have repackaged the legacy 
software and developed the new architecture around financial services that would support 
incremental phaseout, and its Feasibility Evidence Development activity would have assessed 
any outstanding risks and covered them with risk management plans that would be tracked to 
ensure project success. 

A good example of a Brownfield methodology with several case study examples is provided in 
(Hopkins and Jenkins, 2008). 

Case 12a:  Net-Centric Services—Community Support.  Net-Centric Services for 
community support tend to fall into two categories.  One involves community service 
organizations providing needed services for child care, elder care, handicapped, homeless, or 
jobless people.  Their information processing service needs include tracking of clients, 
volunteers, donors, donations, events, and provision of news and communication services.  
These used to require considerable programming to realize, but now can be realized by 
combining and tailoring NDI packages offering such services.  The other category of 
net-centric services for community support involves special interest groups (professionals, 
hobbyists, committees, ethnic groups) with similar needs for tracking members, interests, 
subgroups, events, and provision of news and communication services.  Development of such 
capabilities involves much more prototyping and much less documentation than is needed for 
more programming-oriented applications; for example, the internals of the NDI packages are 
generally unavailable for architectural documentation, and the resulting system capabilities are 
more driven by NDI capabilities than by prespecified requirements documents. 

A good example of how the ICM provides support for such net-centric services is provided in 
(Boehm and Bhuta, 2008) and the entire journal provides additional approaches and case 
studies of net-centric services development. 

Case 12b:  Net-Centric Services: Quick Response Decision Support.  Another form of 
net-centric services involves rapidly configuring a capability to analyze alternative decision 
options in response to a competitor's initiative.  These might involve a competitor beginning to 
penetrate a business's home territory, and might involve the need to evaluate the relative costs 
and benefits of alternative strategies of expanding services, expanding service locations, or 



 

  

repricing products or services.  NDI packages to help analyze geographical, logistical, human 
resources, and financial implications of alternative competitive response decisions can be 
rapidly configured to provide a quick-response capability for converging on a decision.  Once 
the decision is made, the resulting capability may be phased out, or evolved into a more general 
and maintainable capability for similar future situations.  Again, the November/December 
2008 special issue of IEEE Software on "Opportunistic Software Systems Development" 
provides additional perspectives on this area of net-centric services development. 

Conclusions and Future Plans 

The Incremental Commitment Model described in this article builds on experience-based 
critical success factor principles (stakeholder satisficing, incremental definition, iterative 
evolutionary growth, concurrent engineering, risk management) and the strengths of existing 
V, concurrent engineering, spiral, agile, and lean process models to provide a framework for 
concurrently engineering system-specific critical factors into the systems engineering and 
systems development processes. It provides capabilities for evaluating the feasibility of 
proposed solutions; and for integrating feasibility evaluations into decisions on whether and 
how to proceed further into systems development and operations. Previous work has shown 
that the critical success factors inherent in the ICM have been found in many successful 
programs (Boehm and Lane, 2007).  In this paper, we have described how the ICM can be 
applied to many types of systems.  Continuing efforts are underway to evaluate the efficacy of 
the ICM as well as its fallibility. 
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