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Abstract.  Complex systems composed of multi-level hierarchical systems exhibit complex interacting 
dependences which affects the performance of the overall system. Although, one solution is to tightly 
monitor each system activity and feedback to the next step level in order to take appropriate measures and 
actions to improve the system this solution is costly and too systematic. In addition, a dependency chain 
exists between low level systems and higher level systems this dependency chains being as long as the 
number of levels of the system. We propose in this paper an activity driven adaptive hierarchical prediction 
technique for complex systems which minimizes monitoring and prediction resources requirements and 
still keep efficient overall systems performance prediction. 

  Introduction 
 
Processes such as IEEE-Std-1220 and MIL-Std-499 are very important processes for systems 
analysis and control [Sage 2007]. However, they are based on the assumption of relatively stable 
systems with well identified and analyzed requirements. On the contrary, complex systems may 
exhibit changing behavior with varying functionnalities. In this context, continuous profiling, 
monitoring is necessary to adjust to the new system requirements. In his regard, system behavior 
prediction is paramount to anticipate futur requirements. Complex systems composed of 
multi-level hierarchical systems exhibit complex interacting dependences which affects the 
performance of the overall system. Although, one solution is to tightly monitor each system 
activity and feedback to the next step level in order to take appropriate measures and actions to 
improve the system this solution is costly and too systematic. In addition, a dependency chain 
exists between low level systems and higher level systems this dependency chains being as long as 
the number of levels of the system. This dependency chain has its own delay which might affect 
the capacity of the systems to react in appropriate time framework.  We propose in this paper an 
activity driven adaptive prediction technique for complex systems which minimizes monitoring 
and prediction resources requirements and still keep efficient overall systems performance 
prediction. 

Hierarchical Complex Systems 
Hierarchical complex systems are composed of a collection of systems interconnected 
hierarchically. Each system has its own inputs and outputs with some outputs being inputs to the 
immediate upper level .The number of systems connected to an upper systems is not limited 



                                                                                                                                                            

  

although obviously finite and the general structure needs not to be symmetric in the levels or 
hierarchy depth.  
 

 
 

Figure 1. Hierarchical Complex systems 
For a complex system such as the example above it becomes quickly difficult to monitor and 
control when the hierarchy level increases. In addition, some part of the system may have a more 
important varying activity requiring a tighter monitoring and control. The following figure gives 
an example of a small hierarchical system composed of 5 systems to which we add a monitoring 
and prediction unit. We assume in this example that the shaded box represents a system with very 
little varying activity while other systems have a more varying activity which requires tight 
monitoring and prediction in order to adapt the system. 
                          

 
Figure 2. Monitor and prediction (1) exhaustive (2) hierarchical prediction (3) adaptive 

hierarchical prediction 
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In the first approach monitoring and prediction units are unconnected and it is assumed that the 
global monitoring and prediction is realized by some ad hoc technique. In the second case the 
global monitoring and prediction unit is hierarchically fed by the the lower level monitoring and 
prediction units even if some units do not contribute to the variations due to some very stable 
activity. The third approach is an adaptive technique which we only monitor systems which exhibit 
varying behavior and require prediction in order to contribute to the overall system behavior 
prediction. Several techniques have been used for prediction and forecasting of time series coming 
from applied mathematics and  statistics. However, neural networks have been successfully used 
for the same purpose and have competed favorably with traditionnal statistical techniques. They 
have been used for various purposes. For examples, Barr [Barr 2008] have used them for 
organization, learning and cooperation, Bode  [Bode 1998 ] have used them for decision support in 
the management of research and development, Breitler [Breitler 2004] for predicting reliability of 
complex systems, On Cheung [On Cheung 2006] have used them for predicting project 
performance, Selby [Selby 2006] for prediction in large scale systems engineering  while William 
Chien [Chien 1999] have used them for strategic planning. Finally, they have been intensively 
used in embedded systems (example [Chtourou 2006]). 
 

Neural Network Prediction 
 
A recurrent neural network corresponds to a dynamic system composed by many states that evolve 
according to a number of nonlinear equations. Recurrent neural networks have been intensively 
used for dynamic process modeling [Nerrand 1994 ] and time series prediction [ Lin 1996][Connor 
1994]. The overall design process of a neural network is given in the below figure. 
 

   
Figure 3. Neural network construction 



                                                                                                                                                            

  

A large variety of learning algorithms for recurrent neural networks have been explored and 
multiple architectures have been employed to solve the one step-ahead prediction problem such as 
the incremental Simple Recurrent Network (SRN) and Simple Recurrent Network with Shortcut 
Connections (SRNSC) implemented in  to predict samples of the training sequences. In the SRN 
architecture, the recurrent inputs are connected to the neurons of the hidden layer. The SRNSC 
architecture is a SRN model with connections between neurons of input and output layers. Other 
RNN architectures have been proposed for implementing multi step ahead prediction system, 
which are the NARX model [Lin 96] and a dynamic recurrent neural network. The connections in 
the dynamic recurrent networks are composed by feedforward links, recurrent links (connection 
between neurons of the hidden layer) and cross-talk links (connection between neurons of the 
output and the hidden layers) .  
 

NARX Neural Network architecture 

Recurrent neural networks are able to model complex behaviors of dynamic systems and fully 
connected recurrent neural network have been proven to be computationally rich [Atiya 2000].  
 
The mathematical formulation of the single-step-ahead prediction performed on the y time series 
values which in our case represents subsystem activity is given by the following equation: 
 

)](....,),1(),([)1(ˆ Nkykykypky −−=+     (1) 

 

N is the length of the input vector of the predictor p, y(k) is the kth symbol of the y time series. 
 

                                                     
Figure 4. Recurrent neural network 

This equation becomes in the multi (n) step-ahead prediction: 
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Multi-step-ahead prediction (n step-ahead) is the concatenation of n single-step-ahead prediction. 
We  perform single-step-ahead prediction by a recurrent neural network with N input neurons and 
a single output neuron. The concatenation of many predictors to build a Multi-step-ahead predictor  
is accomplished by connecting the output of kth network to the input of the (k+1)th network. This 
concatenation is equivalent to a single recurrent neural network with 2n hidden layers. 
Multi-step-ahead prediction is of particular importance in large hierarchical complex systems as 
single step prediction can not be propagated fast enough through the hierarchy to allow efficient 
control. 
 

Learning algorithm 
The learning algorithm is based on the minimization of the cost function J given by the following 
equation:  
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With )(ˆ iky +  is the estimated output by the recurrent neural network, ikyd +( ) is the desired one, n 
is the length of the prediction window. The derivative of the cost function with respect to a 
connection weight parameter (θ ) is given by: 
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With N is the number of recurrent input in the first layer, θ  is a connection weight parameter of 
the recurrent neural network. The weights correction of the recurrent neural network is executed at 
the end of each prediction window according to: 
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Recurrent neural network training is recognized as very delicate procedure especially for an 
important prediction window length (multi-step ahead). The nature of the predicted data has a 
great influence in the convergence speed of the training phase. The above RNN model cannot 



                                                                                                                                                            

  

handle large and noisy data sets as might appear in large hierarchical complex systems. We need a 
multiple recurrent neural network structure allowing the prediction of noisy and large data sets. 
 

Multiple recurrent neural networks for prediction 
This section describes the synthesis phases of a multiple recurrent neural network predictor 
composed by a SOM (Self Organizing Map) combined with a set of local RNN predictors 
[Chtourou 2006]. At each sampling time, the proposed architecture provides the next n 
components of the time series. The proposed prediction approach is based on two stages: the 
classification and the prediction. The classification process arranges the data set into many 
sub-classes using a one dimensional SOM. Each sub-class is used to train its associated local RNN. 
Each SOM output neuron corresponds to a local RNN.  
The prediction ability is deeply dependent on the RNN architecture. The recurrent neural network 
architecture is determined by the width of the input and hidden layers. In the presented study, the 
width of the input vector has been fixed based on several experiences. However, the hidden 
neurons number has been determined following an incremental training procedure . 
 

Preliminary Evaluation 
 
We have used the described  neural network model as a predictor on a hypothetical hierarchical 
complex system. According to our experiment a neural network predictor is attached to each 
system in order to predict the system activity.  
 
We will consider the three cases described figure 2:  
 

1. case 1: independent prediction of systems in order to assess the quality of the predictors. In 
this case the inputs of the systems are random and therefore exhibit varying activity which 
require monitoring and prediction. 

 
2. case 2: some systems are stable with coupled prediction: in this case the predictors are 

hierarchically connected with some systems having stable activity therefore with no 
specific needs for prediction.  

 
3. case 3: stable systems  are not connected. The overall system activity prediction does not 

take into account stable systems and no predictor is assigned to these systems. The overall 
system activity is based on the hierarchically connected predictors of the varying units. 

 
 Figure 5 and 6 illustrates case 1, figure 7 and 8  case 2 and finally  figure 9 and 10 case 3. 
 
  Case 1: All sub-systems have some activity.  
 
In this case we will vary all sub-systems and have assigned activity monitoring units predict 
activity and transmit this prediction to upper level systems. Upper level systems combine all 
incoming predictions to generate predictions on the related system activity. The following figure 
shows for the sub-systems both their measured and predicted activity. Clearly the measured and 



 

  

predicted activity is close and provide a useful tool to control the activity of the system. However, 
this case comes at the cost of assigning a prediction unit to each subsystem. 
 
 

 
Figure 5. Case 1: measured and predicted activity for each sub-system at each level of 

the hierarchy with random inputs in all sub-systems 
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Figure 6. Comparison of  Global System Activity Measured and Predicted  
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Case 2: Some activity inputs are varying with some systems activity stable. 
 
In this case we will vary all sub-systems except a randomly selected subset in the hierarchy of 
systems which will have very stable activity and have assigned activity monitoring units predict 
activity and transmit this prediction to upper level systems. Upper level systems again combine all 
incoming predictions to generate predictions on the related system activity. The following figure 
shows for the sub-systems both their measured and predicted activity. Clearly the measured and 
predicted activity is close and provide a useful tool to control the activity of the system. However, 
still this case comes at the cost of assigning a prediction unit to each subsystem even if some 
systems have a stable activity and therefore do not need special prediction effort and resource. 
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Figure 7. Case 2:  measured and predicted activity for each sub-system at each level of the 
hierarchy with random inputs in all sub-systems except some subsystems with little activity 

variation 
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Figure 8. Comparison of  Global System Activity Measured and Predicted 

 
Case 3: Some activity inputs are varying  
 
In this case similar to case 2 we will vary all sub-systems except a randomly selected subset in the 
hierarchy of systems which will have very stable activity however we will have assigned activity 
monitoring units predict activity only on varying unit and transmit this prediction to upper level 
systems. Upper level systems again combine all incoming predictions to generate predictions on 
the related system activity. The following figure shows for the sub-systems both their measured 
and predicted activity.  
 
Figure 8 describes some samples of systems prediction at different levels of the hierarchy while 
ignoring stable activity systems. Figure 9 gives the final prediction result of the top level system 
while ignoring the systems exhibiting stable behavior. As it can be observed the overall predicition 
is good and allows a good estimate of an hierarchical system activity in presence of some stable 
systems. This results allows system designer to focus of   more evolving part of the system in order 
to adapt the system. 
 
This study come as a first step towards support to new research avenues on engineering systems of 
systems [Sage 2007][Lewis2008][Rebovich 2008][Simpson 2008] through profiling [Stevens 
2008] with the objective of continuous allocation of  the right amount of resource [Wang 2007]. 
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Figure 9. Case 3:  measured and predicted activity for each sub-system at each level of 

the hierarchy and ignoring  sub-systems with little activity variation 
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Figure 10. Global result - Hierarchical prediction with ignoring inputs in some 
sub-systems 



 

  

Conclusion 
 

Complex systems composed of multi-level hierarchical systems exhibit complex interacting 
dependences which affects the performance of the overall system. Although, one solution is to 
tightly monitor each system activity and feedback to the next step level in order to take appropriate 
measures and actions to improve the system this solution is costly and too systematic. We 
described in this paper an activity driven adaptive prediction technique for complex systems which 
minimizes monitoring and prediction resources requirements and still keep efficient overall 
systems performance prediction. This was achieved through neural network techniques which 
present the ability to learn dynamic complex behavior. This work is a preliminary work for the 
establishment of a general framework for adaptive complex systems.  

We plan to improve our model and apply this framework for actual systems and system of systems 
with evolving requirements. 
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