
 1

Agent-Based Modeling the Emergent Behavior of
A System-of-Systems

John C. Hsu

Royal Academy of Engineering
Mark Price

Mechanical & Aerospace Engineering
Queens University

Belfast, Northern Ireland
jc0hsu@gmail.com

John R. Clymer
Jose Garcia-Jr.

Electrical Engineering
California State University

Fullerton, CA

Efrain Gonzalez
Southern California Edison

Irwindale, CA 91706

Copyright © 2009 by John Hsu, Mark Price, Jose Garcia-Jr., John Clymer and Efrain Gonzalez. Published and used by INCOSE with
permission

Abstract

Net-Centric Operations (NCO) is operated on a System-of-Systems (SoS) communication
environment. Emergent behavior is one of the five SoS characteristics. Layered SoS
architectures start from the top SoS-level containing emergent behavior. Conceptual
agent-based modeling was presented to simulate the four principles of emergence. The
simulations covered the condition of emergence, non-linear behavior and coupling
relationship between agents. The four principles are interrelated. The emergent behavior
has impacts on traditional systems engineering process. Neural network artificial
intelligence may be needed to assist the understanding of emergent behaviors for
architectural model development. Agent-based modeling needs further development and
should be integrated with neural network and SysML.

Introduction

 Net-Centric Operations (NCO) is an environment where collaboration between
networks, systems and the elements within systems is possible. Network
communications is the foundation to make systems linked or networked to share
information across geographic borders. The basics of network communications are to
transmit data throughout the network, between systems, devices or computers. This is a
Systems-of-Systems (SoS) environment and the five characteristics of SoS presented by
(Maier 1996) are listed in the following:

 • Operational independence of the System Elements,
 • Managerial independence of the System Elements,
 • Evolutionary development,
 • Emergent behavior, and
 • Geographic distribution.

 2

The Internet exhibits a rich set of emergent behaviors represented by the complex
distributed applications that run on top of the communication substrate. The most
complex of these is the World Wide Web, itself a virtual or collaborative system-of-
systems. Many examples of emergent behavior of natural systems-of-systems were
introduced and discussed in (Hsu 2007). Several definitions of emergence were
introduced and the four Principles of Emergence were derived in (Hsu 2007). They will
not be reiterated here.

The SoS displays a global complexity that cannot be adequately managed by hierarchical
structures and central control. Understanding and responding to emergent SoS behavior
– both positive and negative – is another important aspect of System-of-Systems
Engineering (SoSE). This will place a premium on the discovery and clever use of
design principles that produce emergent behavior through voluntary collaboration. To
address such challenges, traditional Systems Engineering is necessary but not sufficient
for the engineering of a system-of-systems.

Architecting a System-of-Systems

 There is an emergent class of systems that are built from component systems in large
scale. Prominent examples are NCO systems. Does the process of architecting and/or
developing these systems differ in important ways from other types of systems? SoS
should be distinguished from large but monolithic system by the independence of their
component systems, their evolutionary nature, but most importantly, their emergent
behaviors. The behavior and/or performance of the SoS cannot be represented in any
form that is simpler than the SoS itself. There is no simple way (i.e. simpler than the SoS
itself) to relate the functions of the parts to the functions of the whole. The traditional
hierarchical functional decomposition is no longer valid due to the non-linear
characteristics of emergent behavior; however, since the emergent behavior is non-
existent in each component system, the hierarchical functional decomposition is still
applicable to component system level.

The first challenge of architecting a SoS is at the top SoS level incorporating the
emergent behavior. The next challenge is how to flow down the SoS level architecture to
the component system level if they are hierarchical structures especially for the legacy
systems. The model-based architecture-centric approach may be one of the answers. The
customer requirements in the form of CONOPS model(s) are captured in the SoS
architecture model(s). The component system architecture models can continue to
capture CONOPS of component system level and the data flow from the upper SoS-level
architecture. The subsystem architecture models can continue to capture CONOPS of
subsystem levels (if there are any) and the data flow from the component system-level
architecture. In this architecture top down development sequence the layered architecture
models are developed and shown in Figure 1. In a layered model, the overall SoS is
broken down into different collections of services, with each collection expressing the
services that are available to layers above it in the “protocol stack” (USAFSAB 2005).
Layered architectures allow different developers to work in parallel and insure that

 3

changes in one layer of the protocol do not interfere with operations above and below that
layer. Thus, layered architectures implement loose coupling between the services that
makes up the overall SoS. System design including hardware and software will be based
on architecture models in different levels.

The SysML (Hsu
2006) is the latest
modeling language
for systems
engineers to be
applicable for both
hardware and
software. It is still
in developing phase
and not designed to
capture emergent
behaviors. Agent-
based modeling
technique has been
applied in
biological studies
(Johnson 2002) and
(Lodding 2004),

human systems (Gore 2002) and (Seel 2003) and software development (Fisher 2006)
and (Mogul 2005). It is especially in social simulation of human behavior by the North
American Association for Computational Social and Organizational Sciences
(NAACSOS), the European Social Simulation Association (ESSA) and the Pacific Asian
Association for Agent-Based Approach in Social Systems Science (PAAA), etc. It
should be attempted to use this modeling technique for the development of a SoS
architecture.

Agent-Based Modeling

 What is an agent? In a simplified way of explanation (Holland 1995), it is useful to
think of an agent’s behavior as determined by a collection of rules. Stimulus-Response
rules are typical and simple. IF stimulus s occurs, THEN give a response r, for example,
IF the car has a flat tire THEN get the jack. Stimulus is what the agent can receive and
Response is what the agent can give. Each component system will be represented by an
agent. Agent-based models consist of dynamically interacting simple rules based agents.
The systems within which they interact can create real world-like complexity resulting in
far more complex and interesting behaviors. Proactive decisions based on reinforcement
learning are also possible agent behavior.

OpEMCSS (Operational Evaluation Modeling for Context Sensitive System) (Clymer
2007) simulates multi-agent systems that learn (Classifier Systems) and can perform
fuzzy control. An agent is referred to sometimes as an “intelligent” agent or autonomous

CON OPS

Requirements
Development

Architecture
(model)

Development
System

Develop ment
Verification
Valid ation

Figure 1. Layered Architectures of System-of-Systems

SoS

Requirements
Development

Architecture
(mo del)

Development
System

Develop ment
Verification
Valid ation

System

Requirements
Development

Architecture
(mo del)

Development
System

Develop ment
Verification
Valid ation

Sub
System

Etc.

Experiment
Venues

Req uirements
Develop ment

Architecture
(mod el)

Develop ment
System

Development
Verification
Validation

SubSub
System

 4

entity. It can be a physical entity that moves and acts in a real world environment or an
abstract one that exists entirely in a computer. An agent context diagram is shown in

Figure 2. For a physical entity it can be a
subsystem or component of a larger system
that interacts with other systems or
subsystems, which results in emergent
behavior. Agents can be hardware-based,
software-based, process-based, people-based,
or any multitude of entities that exhibit
complex adaptive behavior. OpEMCSS
makes possible the modeling of complex
adaptive systems that have context sensitive
system interactions.

Modeling of multi-agent systems, is done through the use of special blocks in
OpEMCSS, such as the Classifier Event Action block. This block operates in a rule
learning mode, enabling a simulation that generates decision contexts which work to
eliminate rules through learning, or rule induction. This enables expert learning in the
transformation of a non-linear function.

Modeling the Emergent Behavior

 There are four Principles of Emergence introduced by (Hsu 2007). OpEMCSS will

be used to simulate and
study these four principles.
A perfect OpEMCSS
example is the World
Model. It is comprised of
many agents with random
initial placement and
vectors. The World
simulation uses agents that
start to move randomly (in
a fixed direction and
velocity) in a 400x400 two
dimensional (playing) field
until they come in
proximity with each other.
The agents obey one basic

rule. When the agents come together (within a certain range of each other), one of them
will adopt the direction and velocity of motion of the other agent. The net effect is that
the two agents will move together when they come into contact. Because the agents are
moving randomly little groups of agents begin to form. The emergent quality of the
system is that eventually the little groups combine to move as a large group in the same
direction. As the agents collaborate and interact, they work towards a common vector or
goal.

Figure 2. Agent Context Diagram

Agent

Input
Percepts

Receive
Messages

Send
Messages

Change
Internal
Function

Figure 3. OpEMCSS Agent-Based World Model

 5

The Agent-Based World Model of the
interaction of autonomous, adaptive
agents, interacting and collaborating
characteristic to natural and human
systems, is shown in Figure 3. For
example, the twenty (20) agents would
start move randomly in their own
directions at the beginning of simulation
as shown in Figure 4. When the twenty
(20) agents reached emergent behavior,
they moved together in any directions as
shown in Figure 5.

IntRing is the parameter in the model to set the interactive range between agents. This
interactive range can be interpreted as a measurement of bondage between agents. It was

set at 15 for the simulation as shown in Figure
6. The simulation started with two agents
since this was the minimum number of agents
(systems) required to exhibit the emergent
behavior under a SoS environment. Setting
the number of agents was shown in Figure 7.
The simulation runs started from two (2)
agents and increased to twenty (20) agents.
For each simulation run, the time for agents to
reach emergent behavior was recorded. The
time to emergence versus number of agents

was shown in Figure 8. Please note that the time shown in the figure was the simulation
run time and not the real time. But it can
still be used as a relative measurement of
time to emergence. It can be seen that the
time to reach emergence is irregular with
the number of agents in the play. The
same simulation was repeated and the
results were shown in Figure 9. Although
the time to reach emergence was still
irregular, the time taken to reach
emergence was different for the same
number of agents from that shown in
Figure 8. The irregularity and different
results for repeated simulation runs will be

explained in the Discussion Section.

Figure 4. The Beginning of Agents Movement

Figure 5. The Agents Moving together

Figure 6. Define Begin Event Attributes

 6

As mentioned in the above, IntRing is simulating the range within which the agents will
be interactive. The next simulation would vary the IntRing for a fixed number of agents.

The number of agent was set at ten (10)
using the diagram shown in Figure 7.
Changing the IntRing would use the
diagram shown in Figure 6. The purpose
of this simulation was to find the time to
reach emergence for ten (10) agents as a
function of bondage between agents. The
results were shown in Figure 10. The
bondage values shown in the figure was a
measurement of relative binding force and
not on absolute force. The resulting
values may be different if the run was

repeated due to the random autonomous characteristics of agents but the emergent
behavior as a function of bondage
should be the same, i.e., the time to
reach emergence would be increased
when the binding force between
agents was increased.

Discussion

 The results from the above
simulations will be discussed to
demonstrate the compliance with the
four Principles of Emergence.

1. Condition of Emergence - Emergence will not occur for a single independent
system. An avalanche condition (Goldstein 1999), or a critical state, has to exist
prior to the occurrence of emergence for a SoS environment.

The number of agents has to be more than one (1) to satisfy the condition of
emergence. Even though there is more than one agent, it takes a time delay to
reach emergent behavior as shown in Figures 8 and 9. The time which takes to
reach the emergent behavior is independent of the number of agents. It is
governed by the agent’s characteristics of autonomous and random movement.

2. Emergent Behavior is Inversely Proportional to the Degree of Bondage
between Systems – The more tightly the component systems are coupled the less
likely that the global emergent behavior will prevail.

Figure 10 demonstrated that the time to reach the emergent behavior was longer
when the binding force between agents was increased. The bondage between
agents was a relative measurement determined by the interaction range between
agents. The shorter the range would be the tighter the bondage between agents.

Figure 7. Set Agent Numbers

Figure 8. Time to Emergence vs Number of Agents

0

20

40

60

80

100

120

140

160

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Agents

Ti
m

e
to

 E
m

er
ge

nc
e

(s
ec

)

 7

The tighter coupling would not allow agents to move freely simulated by an
environment of shorter range of interaction that would be more difficult for agents

to interact, vice versa, a loose
coupling simulated by a
longer interaction range that
would be easier for agents to
interact. It should be noted
that a longer time-to-
emergence implies a slower
prevailing emergent behavior
for tighter coupling and a less
time-to-emergence implies a
quicker occurrence of
emergent behavior for loose

coupling. It is interesting to note that the emergent behavior will not be further
prevailed below a binding
measurement of fifteen (15)
units as shown in Figure 10.
It may infer that beyond a
certain level of loose
coupling, the emergent
behavior has prevailed to its
maximum level.

3. Emergent Behavior

is Non-linear - The
influence by emergent
behavior is not

scalable (Sunami 2004). The output is not proportional to the inputs. It is related
to the Metcalf Law due to the iteration and feedback characteristics, which can
amplify effects at increasing or decreasing levels of scale.

It was demonstrated in Figures 8 and 9 that time-to-emergent behavior was not in
a linear relationship with the number of agents increased or decreased; instead, it
exhibited non-linear random behavior. As it can be seen in Figures 8 and 9, the
two simulation runs did not have the same results for the same number of agents.
This behavior is not predictable and will contribute to the complicacy in
estimating life cycle cost, analyzing risk, assessing safety and reliability, and
verifying and validating the SoS.

4. Emergent behavior is Self-organized - Emergence begins at the ground level.

They are each "self-organizing" systems (Johnson 2002), which typically display
emergent properties. Self-organization (Dabrowski 2006) is a process in which
the internal organization of a system, normally an open system, increases in
complexity without being guided or managed by an outside source.

Figure 9. Time to Emergence vs Number of Agents

0

20

40

60

80

100

120

140

160

180

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Agents

Ti
m

e
to

 E
m

er
ge

nc
e

(x
ec

)

Figure 10. Time to Emergence vs Bondage Between Agents

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100
Bondage Between Agents (units)

Ti
m

e
to

 E
m

er
ge

nc
e

(s
ec

)

 8

The inconsistent and random emergent behaviors observed in Figures 8 and 9 was
the evidence of self-organized nature of agents and a bottom-up process. The
agents interact randomly and autonomously per simple rules without any external
force. The process involves constant communication and feedback among the
lowest level of organization, pattern recognition, local action affecting global
behavior, and takes into consideration the element of unpredictability in a chaotic
system.

These four principles are interrelated. When the Condition of Emergence (# 1) will
emerge governed by the Self-Organized Emergent Behavior (# 4)? Hence, the
Condition of Emergence is random and unpredictable? The Non-Linear Emergent
Behavior (# 3) is the result of Self-Organized Emergent Behavior (# 4) depending on
how the simple rules are autonomously and randomly played among agents. The trend of
Emergent Behavior Inversely Proportional to the Degree of Bondage between
Agents (#2) is true but the exhibition of emergent behavior will be different each time
due to the Self-Organized Emergent Behavior (# 4) and Non-Linear Emergent
Behavior (# 3).

It is noteworthy to discuss risk assessment and mitigation on the SoS level. Due to the
nature of emergent behavior, the summation of component system-level risk may be
more or less than the sum of the individual system-level risk. If the component system
risk level is low, the summation of the individual system risk onto SoS level may be high.
On the other hand, if the individual system risk is high but the combination of these
systems’ risks could be low. The simulated conditions in Figures 8 and 9 showed that by
adding or reducing the number of agents (systems) the emergent behavior could occur
earlier or later (amplified at increasing or decreasing level). The simulated run in Figure
10 implied that the degree of bondage between agents after formation of a SoS level from
the individual systems (agents) could also change the combined risk level. Summation of
component system reliability onto a SoS level reliability has the same analogy.

The modeling efforts for emergent behavior presented in the above is conceptual and
only at the beginning stage for this new endeavor to integrate emergent behavior into
architecture models. It can be seen that there are many possible emergent conditions.
Flexible and adaptable open system architecture is very important in dealing with these
emergent behaviors. Most of the times, the emergent behavior would show up during the
operations of SoS. The architecture models should be robust and easily modified to
incorporate the newly discovered emergent behaviors.

Sometimes, a system with a rather large level of complexity, such as a very large number
of interconnections and rules, that also has some level of self-organization, self-
modification, or such, will suddenly start to exhibit behaviors that were totally
unpredicted by those people who designed and built the system. The result of emergent
behavior may involve influence, cooperation, cascade effects, distributed control, and
orchestration. Neural networks may be helpful in modeling the emergent behavior since
the emergent behavior is complex and sometimes self-initiated. Neural network can
provide an on-going learning capability to capture these emergent behaviors. It is

 9

suggested the agent-based modeling integrated with neural network methodology and
SysML. It may be necessary to have a separate group of specialists in agent-based
modeling and neural network working with the modelers specialized in SysML to
develop architecture models jointly.

Conclusion

 From the demonstrated agent-based simulations, the emergence principles have SoS-
level influence on:

• Top down development via functional decomposition
• System-of-System specification structure & contents
• Functional and performance requirements flow down
• Requirements traceability
• Requirements validation and verification

Emergence can be beneficial or harmful. They exist in complex systems or SoS.
Emergence is the primary mechanism for both success and failure in SoS. A need exists
for developing accurate architecture models including emergent behavior for a SoS. The
challenge is how to develop emergent behaviors that can be incorporated in architectural
models. Emergence is not the enemy. We can learn how to use it to control the emergent
behavior.

Simple and conceptual agent-based models were presented in this paper to simulate the
four principles of emergent behaviors. The unpredicted emergent behavior may prevail
during SoS operation. At that point the architecture has already been developed. The
SoS is in a continuous learning mode. The neural network artificial intelligence may be
the answer for this situation if it is incorporated into the architecture model. It is
recommended the agent-based simulation integrated with SysML.

References

Clymer, John R., OpEMCSS: Exploring the Intricacies of Simulation for MBSE, John R.
Clymer & Associates, 2007.

Dabrowski, Chris and Mills, Kevin, A Program of Work for Understanding Emergent
Behavior in Global Grid Systems, National Institute of Standards and Technology,
February 13, 2006.

Fisher, David, An Emergent Perspective on Interoperation in Systems of Systems,
(CMU/SEI-2006-TR-003), Pittsburgh, PA, Software Engineering Institute, Carnegie
Mellon University, March 2006.

Goldstein, Jeffrey, Emergence as a Construct: History and Issues, Emergence 1, 1999.

 10

Gore, B. F., An Emergent Behavior Model of Complex Human–System Performance: An
Aviation Surface-Related Application, VDI-BERICHT NR. 1675, Dusseldorf, Germany,
2002

Holland, John H., Hidden Order, Helix, Addison-Wesley Company, Reading, Mass, 1995

Hsu, John C. and Butterfield, Marion, Modeling Emergent Behavior for Systems-of-
Systems, 17th Annual INCOSE International Symposium, 2007.

Hsu, John C. and McDonough, J. Mike, Applying the Object Oriented Systems
Engineering Method to A Simple Hardware System, INCOSE Symposium, Toulouse,
France, 2004.

Hsu, John C., Applying Systems Modeling Language to A Simple Hardware System,
INCOSE Symposium, Orlando, Florida, 2006.

Johnson, Steve, Emergence: The Connected Lives of Ants, Brains, Cities, and Software,
Simon and Schuster, New York, 2002.

Lodding, Kenneth, Hitchhiker’s Guide to Biomorphic Software, ACM Queue vol. 2, No.
4, June 2004.

Maier, M., Architecting Principles for Systems-of-Systems, Proceeding of the 6th Annual
INCOSE Symposium, p. 567-574, 1996.

Mogul, Jeffrey C., Emergent (Mis)behavior vs. Complex Software Systems, Hewlett
Packard Laboratories, HPL-2006-2, December 2005.

Seel, Richard, Emergence in Organisations, 2003.

Sunami, Christopher, emergence: Less is More, The Kitopedia, 2004.

United States Air Force Scientific Advisory Board, System-of-Systems Engineering for
Air Force Capability Development, SAB-TR-05-04, July 2005.

	Prev:
	Next:
	Close:
	First:

