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Abstract 

 
Net-Centric Operations (NCO) is operated on a System-of-Systems (SoS) communication 
environment.  Emergent behavior is one of the five SoS characteristics.  Layered SoS 
architectures start from the top SoS-level containing emergent behavior.  Conceptual 
agent-based modeling was presented to simulate the four principles of emergence.  The 
simulations covered the condition of emergence, non-linear behavior and coupling 
relationship between agents.  The four principles are interrelated.  The emergent behavior 
has impacts on traditional systems engineering process.  Neural network artificial 
intelligence may be needed to assist the understanding of emergent behaviors for 
architectural model development.  Agent-based modeling needs further development and 
should be integrated with neural network and SysML. 
 

Introduction 
 
 Net-Centric Operations (NCO) is an environment where collaboration between 
networks, systems and the elements within systems is possible.  Network 
communications is the foundation to make systems linked or networked to share 
information across geographic borders.  The basics of network communications are to 
transmit data throughout the network, between systems, devices or computers.  This is a 
Systems-of-Systems (SoS) environment and the five characteristics of SoS presented by 
(Maier 1996) are listed in the following: 
 
 • Operational independence of the System Elements, 
 • Managerial independence of the System Elements, 
 • Evolutionary development, 
 • Emergent behavior, and 
 • Geographic distribution. 
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The Internet exhibits a rich set of emergent behaviors represented by the complex 
distributed applications that run on top of the communication substrate.  The most 
complex of these is the World Wide Web, itself a virtual or collaborative system-of-
systems.  Many examples of emergent behavior of natural systems-of-systems were 
introduced and discussed in (Hsu 2007).  Several definitions of emergence were 
introduced and the four Principles of Emergence were derived in (Hsu 2007).  They will 
not be reiterated here. 
 
The SoS displays a global complexity that cannot be adequately managed by hierarchical 
structures and central control.  Understanding and responding to emergent SoS behavior 
– both positive and negative – is another important aspect of System-of-Systems 
Engineering (SoSE).  This will place a premium on the discovery and clever use of 
design principles that produce emergent behavior through voluntary collaboration.  To 
address such challenges, traditional Systems Engineering is necessary but not sufficient 
for the engineering of a system-of-systems. 
 

Architecting a System-of-Systems 
 
 There is an emergent class of systems that are built from component systems in large 
scale.  Prominent examples are NCO systems.  Does the process of architecting and/or 
developing these systems differ in important ways from other types of systems?  SoS 
should be distinguished from large but monolithic system by the independence of their 
component systems, their evolutionary nature, but most importantly, their emergent 
behaviors.  The behavior and/or performance of the SoS cannot be represented in any 
form that is simpler than the SoS itself.  There is no simple way (i.e. simpler than the SoS 
itself) to relate the functions of the parts to the functions of the whole.  The traditional 
hierarchical functional decomposition is no longer valid due to the non-linear 
characteristics of emergent behavior; however, since the emergent behavior is non-
existent in each component system, the hierarchical functional decomposition is still 
applicable to component system level.   
 
The first challenge of architecting a SoS is at the top SoS level incorporating the 
emergent behavior.  The next challenge is how to flow down the SoS level architecture to 
the component system level if they are hierarchical structures especially for the legacy 
systems.  The model-based architecture-centric approach may be one of the answers.  The 
customer requirements in the form of CONOPS model(s) are captured in the SoS 
architecture model(s).  The component system architecture models can continue to 
capture CONOPS of component system level and the data flow from the upper SoS-level 
architecture.  The subsystem architecture models can continue to capture CONOPS of 
subsystem levels (if there are any) and the data flow from the component system-level 
architecture.  In this architecture top down development sequence the layered architecture 
models are developed and shown in Figure 1.  In a layered model, the overall SoS is 
broken down into different collections of services, with each collection expressing the 
services that are available to layers above it in the “protocol stack” (USAFSAB 2005).  
Layered architectures allow different developers to work in parallel and insure that 
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changes in one layer of the protocol do not interfere with operations above and below that 
layer.  Thus, layered architectures implement loose coupling between the services that 
makes up the overall SoS.  System design including hardware and software will be based 
on architecture models in different levels.   
 

The SysML (Hsu 
2006) is the latest 
modeling language 
for systems 
engineers to be 
applicable for both 
hardware and 
software.  It is still 
in developing phase 
and not designed to 
capture emergent 
behaviors.  Agent-
based modeling 
technique has been 
applied in 
biological studies 
(Johnson 2002) and 
(Lodding 2004), 

human systems (Gore 2002) and (Seel 2003) and software development (Fisher 2006) 
and (Mogul 2005).  It is especially in social simulation of human behavior by the North 
American Association for Computational Social and Organizational Sciences 
(NAACSOS), the European Social Simulation Association (ESSA) and the Pacific Asian 
Association for Agent-Based Approach in Social Systems Science (PAAA), etc.  It 
should be attempted to use this modeling technique for the development of a SoS 
architecture.   
 

Agent-Based Modeling 
 
  What is an agent?  In a simplified way of explanation (Holland 1995), it is useful to 
think of an agent’s behavior as determined by a collection of rules.  Stimulus-Response 
rules are typical and simple.  IF stimulus s occurs, THEN give a response r, for example, 
IF the car has a flat tire THEN get the jack.  Stimulus is what the agent can receive and 
Response is what the agent can give.  Each component system will be represented by an 
agent.  Agent-based models consist of dynamically interacting simple rules based agents. 
The systems within which they interact can create real world-like complexity resulting in 
far more complex and interesting behaviors.  Proactive decisions based on reinforcement 
learning are also possible agent behavior. 
 
OpEMCSS (Operational Evaluation Modeling for Context Sensitive System) (Clymer 
2007) simulates multi-agent systems that learn (Classifier Systems) and can perform 
fuzzy control.  An agent is referred to sometimes as an “intelligent” agent or autonomous 
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entity.  It can be a physical entity that moves and acts in a real world environment or an 
abstract one that exists entirely in a computer.  An agent context diagram is shown in 

Figure 2.  For a physical entity it can be a 
subsystem or component of a larger system 
that interacts with other systems or 
subsystems, which results in emergent 
behavior.  Agents can be hardware-based, 
software-based, process-based, people-based, 
or any multitude of entities that exhibit 
complex adaptive behavior.  OpEMCSS 
makes possible the modeling of complex 
adaptive systems that have context sensitive 
system interactions.   

 
Modeling of multi-agent systems, is done through the use of special blocks in 
OpEMCSS, such as the Classifier Event Action block.  This block operates in a rule 
learning mode, enabling a simulation that generates decision contexts which work to 
eliminate rules through learning, or rule induction.  This enables expert learning in the 
transformation of a non-linear function. 
 

Modeling the Emergent Behavior 
 
 There are four Principles of Emergence introduced by (Hsu 2007).  OpEMCSS will 

be used to simulate and 
study these four principles.  
A perfect OpEMCSS 
example is the World 
Model.  It is comprised of 
many agents with random 
initial placement and 
vectors.  The World 
simulation uses agents that 
start to move randomly (in 
a fixed direction and 
velocity) in a 400x400 two 
dimensional (playing) field 
until they come in 
proximity with each other.  
The agents obey one basic 

rule.  When the agents come together (within a certain range of each other), one of them 
will adopt the direction and velocity of motion of the other agent.  The net effect is that 
the two agents will move together when they come into contact.  Because the agents are 
moving randomly little groups of agents begin to form.  The emergent quality of the 
system is that eventually the little groups combine to move as a large group in the same 
direction.  As the agents collaborate and interact, they work towards a common vector or 
goal.   

Figure 2.  Agent Context Diagram
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The Agent-Based World Model of the 
interaction of autonomous, adaptive 
agents, interacting and collaborating 
characteristic to natural and human 
systems, is shown in Figure 3.  For 
example, the twenty (20) agents would 
start move randomly in their own 
directions at the beginning of simulation 
as shown in Figure 4.  When the twenty 
(20) agents reached emergent behavior, 
they moved together in any directions as 
shown in Figure 5.   

 
IntRing is the parameter in the model to set the interactive range between agents.  This 
interactive range can be interpreted as a measurement of bondage between agents.  It was 

set at 15 for the simulation as shown in Figure 
6.  The simulation started with two agents 
since this was the minimum number of agents 
(systems) required to exhibit the emergent 
behavior under a SoS environment.  Setting 
the number of agents was shown in Figure 7.  
The simulation runs started from two (2) 
agents and increased to twenty (20) agents.  
For each simulation run, the time for agents to 
reach emergent behavior was recorded.  The 
time to emergence versus number of agents 

was shown in Figure 8.  Please note that the time shown in the figure was the simulation 
run time and not the real time.  But it can 
still be used as a relative measurement of 
time to emergence.  It can be seen that the 
time to reach emergence is irregular with 
the number of agents in the play.  The 
same simulation was repeated and the 
results were shown in Figure 9.  Although 
the time to reach emergence was still 
irregular, the time taken to reach 
emergence was different for the same 
number of agents from that shown in 
Figure 8.  The irregularity and different 
results for repeated simulation runs will be 

explained in the Discussion Section. 

Figure 4.  The Beginning of Agents Movement

Figure 5.  The Agents Moving together

Figure 6. Define Begin Event Attributes 
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As mentioned in the above, IntRing is simulating the range within which the agents will 
be interactive.  The next simulation would vary the IntRing for a fixed number of agents.  

The number of agent was set at ten (10) 
using the diagram shown in Figure 7.  
Changing the IntRing would use the 
diagram shown in Figure 6.  The purpose 
of this simulation was to find the time to 
reach emergence for ten (10) agents as a 
function of bondage between agents.  The 
results were shown in Figure 10.  The 
bondage values shown in the figure was a 
measurement of relative binding force and 
not on absolute force.  The resulting 
values may be different if the run was 

repeated due to the random autonomous characteristics of agents but the emergent 
behavior as a function of bondage 
should be the same, i.e., the time to 
reach emergence would be increased 
when the binding force between 
agents was increased.   
 

Discussion 
 
 The results from the above 
simulations will be discussed to 
demonstrate the compliance with the 
four Principles of Emergence. 
 

1. Condition of Emergence - Emergence will not occur for a single independent 
system.  An avalanche condition (Goldstein 1999), or a critical state, has to exist 
prior to the occurrence of emergence for a SoS environment.   

 
The number of agents has to be more than one (1) to satisfy the condition of 
emergence.  Even though there is more than one agent, it takes a time delay to 
reach emergent behavior as shown in Figures 8 and 9.  The time which takes to 
reach the emergent behavior is independent of the number of agents.  It is 
governed by the agent’s characteristics of autonomous and random movement.  
 

2. Emergent Behavior is Inversely Proportional to the Degree of Bondage 
between Systems – The more tightly the component systems are coupled the less 
likely that the global emergent behavior will prevail.   
 
Figure 10 demonstrated that the time to reach the emergent behavior was longer 
when the binding force between agents was increased.  The bondage between 
agents was a relative measurement determined by the interaction range between 
agents.  The shorter the range would be the tighter the bondage between agents.  

Figure 7. Set Agent Numbers 

Figure 8.  Time to Emergence vs Number of Agents
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The tighter coupling would not allow agents to move freely simulated by an 
environment of shorter range of interaction that would be more difficult for agents 

to interact, vice versa, a loose 
coupling simulated by a 
longer interaction range that 
would be easier for agents to 
interact.  It should be noted 
that a longer time-to-
emergence implies a slower 
prevailing emergent behavior 
for tighter coupling and a less 
time-to-emergence implies a 
quicker occurrence of 
emergent behavior for loose 

coupling.  It is interesting to note that the emergent behavior will not be further 
prevailed below a binding 
measurement of fifteen (15) 
units as shown in Figure 10.  
It may infer that beyond a 
certain level of loose 
coupling, the emergent 
behavior has prevailed to its 
maximum level. 

 
3. Emergent Behavior 

is Non-linear - The 
influence by emergent 
behavior is not 

scalable (Sunami 2004).  The output is not proportional to the inputs.  It is related 
to the Metcalf Law due to the iteration and feedback characteristics, which can 
amplify effects at increasing or decreasing levels of scale.   

 
It was demonstrated in Figures 8 and 9 that time-to-emergent behavior was not in 
a linear relationship with the number of agents increased or decreased; instead, it 
exhibited non-linear random behavior.  As it can be seen in Figures 8 and 9, the 
two simulation runs did not have the same results for the same number of agents.  
This behavior is not predictable and will contribute to the complicacy in 
estimating life cycle cost, analyzing risk, assessing safety and reliability, and 
verifying and validating the SoS.   

 
4. Emergent behavior is Self-organized - Emergence begins at the ground level.  

They are each "self-organizing" systems (Johnson 2002), which typically display 
emergent properties.  Self-organization (Dabrowski 2006) is a process in which 
the internal organization of a system, normally an open system, increases in 
complexity without being guided or managed by an outside source.   

 

Figure 9.  Time to Emergence vs Number of Agents
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Figure 10.  Time to Emergence vs Bondage Between Agents
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The inconsistent and random emergent behaviors observed in Figures 8 and 9 was 
the evidence of self-organized nature of agents and a bottom-up process.  The 
agents interact randomly and autonomously per simple rules without any external 
force.  The process involves constant communication and feedback among the 
lowest level of organization, pattern recognition, local action affecting global 
behavior, and takes into consideration the element of unpredictability in a chaotic 
system.   

 
These four principles are interrelated.  When the Condition of Emergence (# 1) will 
emerge governed by the Self-Organized Emergent Behavior (# 4)?  Hence, the 
Condition of Emergence is random and unpredictable?  The Non-Linear Emergent 
Behavior (# 3) is the result of Self-Organized Emergent Behavior (# 4) depending on 
how the simple rules are autonomously and randomly played among agents.  The trend of 
Emergent Behavior Inversely Proportional to the Degree of Bondage between 
Agents (#2) is true but the exhibition of emergent behavior will be different each time 
due to the Self-Organized Emergent Behavior (# 4) and Non-Linear Emergent 
Behavior (# 3). 

 
It is noteworthy to discuss risk assessment and mitigation on the SoS level.  Due to the 
nature of emergent behavior, the summation of component system-level risk may be 
more or less than the sum of the individual system-level risk.  If the component system 
risk level is low, the summation of the individual system risk onto SoS level may be high.  
On the other hand, if the individual system risk is high but the combination of these 
systems’ risks could be low.  The simulated conditions in Figures 8 and 9 showed that by 
adding or reducing the number of agents (systems) the emergent behavior could occur 
earlier or later (amplified at increasing or decreasing level).  The simulated run in Figure 
10 implied that the degree of bondage between agents after formation of a SoS level from 
the individual systems (agents) could also change the combined risk level.  Summation of 
component system reliability onto a SoS level reliability has the same analogy. 
 
The modeling efforts for emergent behavior presented in the above is conceptual and 
only at the beginning stage for this new endeavor to integrate emergent behavior into 
architecture models.  It can be seen that there are many possible emergent conditions.  
Flexible and adaptable open system architecture is very important in dealing with these 
emergent behaviors.  Most of the times, the emergent behavior would show up during the 
operations of SoS.  The architecture models should be robust and easily modified to 
incorporate the newly discovered emergent behaviors.   
 
Sometimes, a system with a rather large level of complexity, such as a very large number 
of interconnections and rules, that also has some level of self-organization, self-
modification, or such, will suddenly start to exhibit behaviors that were totally 
unpredicted by those people who designed and built the system.  The result of emergent 
behavior may involve influence, cooperation, cascade effects, distributed control, and 
orchestration.  Neural networks may be helpful in modeling the emergent behavior since 
the emergent behavior is complex and sometimes self-initiated.  Neural network can 
provide an on-going learning capability to capture these emergent behaviors.  It is 
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suggested the agent-based modeling integrated with neural network methodology and 
SysML.  It may be necessary to have a separate group of specialists in agent-based 
modeling and neural network working with the modelers specialized in SysML to 
develop architecture models jointly. 
 

Conclusion 
 
 From the demonstrated agent-based simulations, the emergence principles have SoS-
level influence on:  
 
• Top down development via functional decomposition 
• System-of-System specification structure & contents 
• Functional and performance requirements flow down 
• Requirements traceability 
• Requirements validation and verification 
 
Emergence can be beneficial or harmful.  They exist in complex systems or SoS.  
Emergence is the primary mechanism for both success and failure in SoS.  A need exists 
for developing accurate architecture models including emergent behavior for a SoS.  The 
challenge is how to develop emergent behaviors that can be incorporated in architectural 
models.  Emergence is not the enemy.  We can learn how to use it to control the emergent 
behavior. 
 
Simple and conceptual agent-based models were presented in this paper to simulate the 
four principles of emergent behaviors.  The unpredicted emergent behavior may prevail 
during SoS operation.  At that point the architecture has already been developed.  The 
SoS is in a continuous learning mode.  The neural network artificial intelligence may be 
the answer for this situation if it is incorporated into the architecture model.  It is 
recommended the agent-based simulation integrated with SysML.   
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