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Abstract. The most critical requirements for the lifetime value of a system are its non-
functional requirements such as reliability, security, maintainability, changeability, etc. These 
are collectively known as the ‘ilities’ and are typically addressed in system design once the 
functional architecture has been developed. In this paper we propose the use of architecture-
centric design that modifies this standard workflow so that those non-functional 
requirements, which actually reflect the true business needs, are addressed first. This ensures 
that the final system better reflects and embodies those architecturally-significant 
requirements rather than having them addressed secondarily. This is an important change 
since the ‘ilities’ are systemic properties (properties of the system as a whole) rather than 
systematic properties (properties of individual components or sub-systems) and are therefore 
difficult to address once the functional architecture has been determined and the separation of 
concerns is already somewhat completed. We provide an example of the approach based 
around a simplified case study of an online, on-board health monitoring system for shipboard 
gas turbine electricity generators that collects, filters, analyzes, transmits, and mines sensor 
data from the generators subsystems. 

Introduction 
A system is considered successful if it meets stakeholder needs. On the surface this would 
imply that designing the system to meet the requirements specification developed at project 
inception would be sufficient, but in reality the stakeholder needs change continuously 
throughout the development process, and in fact, throughout a system’s lifetime. 
Correspondingly, the value the system provides to its users will diminish during its lifetime 
unless action is taken to ensure that the system evolves to meet those changing needs 
(Browning and Honor 2008; Sangwan et al. 2008a). 

In order for the system to evolve the architecture must be designed accordingly. This has 
typically been achieved by adapting the functional architecture – the architecture developed 
to meet the functional requirements of the system – through design for reliability, 
maintainability, usability, etc. (Blanchard and Fabrycky 2006). To this end, significant strides 
have been made in recent years in the understanding of changeability, flexibility, and 
adaptability, and how they impact architecture and architectural decisions (Fricke and Shulz 
2005; Engel and Browning 2008) to aid in such processes. It is clear, then, that the ilities, as 
they are known, are gaining importance in systems design. In fact, it could even be said that 
they are now even more important to the lifetime value of a system than the functional 
requirements – the functional requirements will change, but only if the architecture can 
endure such change (Ross et al. 2008; Sangwan et al. 2008b). 



Given this change in priorities, we are left with the challenge of “how to create systems with 
the desired behaviors and to predict and suppress the undesired ones” (Crawley et al 2004). In 
that case, might an alternative approach to architectural design, one that focuses primarily on 
the non-functional requirements of the system, be advantageous? Instead of first 
decomposing a system according to its gross functionality, the architectural design is driven 
by the important quality attributes that ensure its longtime survival (Sangwan and Neill 
2007). One approach that has been used successfully in software engineering, and shows 
promise in systems engineering, is the combination of the Quality Attribute Workshops 
(Bachmann et al., 2002; Barbacci et al., 2000) and Attribute Driven Design (Bass et al., 
2003). In this paper we will demonstrate architecture-centric design in systems engineering 
using the combination of QAW and ADD through a simplified case study of a generator 
health monitoring system. 

Case Study 
GenHealth is an online, real-time health and condition monitoring system for Ship Service 
Gas Turbine Generators. The SSGTG consists of a gas turbine engine that turns a generator 
that supplies electrical power to the ship and its subsystems through the ship’s switchboards. 
A typical ship would use three such generators each supplying over 2.5 MW of electrical 
power. 

In such a hostile environment, equipment failure is frequent, with a mean time between 
failure as low as 600 hours (25 days of round-the-clock operation) and any unscheduled 
downtime can be very costly, not only financially, but also in terms of safety, and in military 
applications, security. It is, therefore, important that faults are diagnosed early so that 
breakdown can be avoided. Such predictive monitoring is both a selling feature of the 
equipment, but also a cost-savings to the operator and maintainer. Additionally, on-board, on-
line monitoring could provide valuable insight into the turbine and generator operation and 
reveal potential design improvements for future models by mining the data streams from the 
fuel (rate, pressure), oil (temperature, pressure), power (RMS, harmonics, peak), torque, load, 
and control sensors. To accomplish the manufacturer is seeking to develop an integrated 
sensor-data gathering and storage system to deploy onto the ship which can then filter, 
encrypt, and transmit this data to the ship-board operator’s systems for local monitoring and 
maintenance as well as to the system support central offices for diagnostics and analysis and 
the regional maintenance and modernization coordination offices for preventive repairs.  

In order to meet these objectives the system must incorporate the following broad functional 
requirements: 

 Real-time access to the turbine, control system and generator data 

 Statistical modeling of data for early fault prediction. 

 Online monitoring of the equipment supported by a visualization of the data 

 Ticketing service and event notification related to fault detection. 

Figure 1 indicates the context for the GenHealth system. It receives sensor data for 
diagnostics and analysis from the key subsystems of the SSGTG and interacts with many 
different users that include the maintenance, support and design engineers. 



 
Figure 1: GenHealth context diagram 

 

Of course, this operational context of the SSGTG imposes considerable constraints on the 
final system that must be accommodated. First and foremost is the reliability and throughput 
of a data network within the generator and engine rooms of a ship. The heavy equipment and 
the potentially turbulent, hot, and humid conditions make for a noisy electrical and physical 
environment in which to transmit large volumes of sensor data from the SSGTG subsystems. 
Correspondingly, reconciling this sensor data, synchronizing it to a consistent clock, storing it 
when the network is unreliable, filtering it for upload to the system command’s central office, 
and analyzing it both locally and centrally for diagnosis and evaluation are all made more 
difficult. In addition, the data must be encrypted to protect the ship’s operators and an audit 
trail is also necessary for non-repudiation. 

Architecture-Centric Design 
The first step in architecture-centric design is to determine the most critical systemic 
properties that the architecture must embody. On the surface we may consider all systemic 
properties important (the system must be secure, reliable, maintainable, robust, modifiable, 
etc.) but in practice the relative importance of each property varies from system to system. 
Furthermore, such coarse-grained requirements are not particularly useful in design. We may 
desire the system be modifiable, but the real question is modifiable with respect to which 
aspects, when, and with how much effort? (Sangwan et al 2008a) 

To answer such questions we employ Quality Attribute Workshops. These are facilitated 
focus groups of stakeholders which establish a prioritized set of architecturally significant 
requirements in the form of quality attribute scenarios – “short stories that describe an 
interaction with the system that exercises a particular quality [with] at the very least, a clear 
stimulus and response” (Barbacci et al 2000) 



The workshop begins with a stakeholder presentation on the business and mission goals for 
the system under consideration followed by identification of key architectural drivers 
reflecting those core goals. The GenHealth system has the following business goals: 

BG1: Improve support efficiency: Provide remote capability to troubleshoot SSGTG 
problems. 

BG2: Improve availability: Monitor the health of SSGTG to assess its state in order to predict 
potential problems and allow the early scheduling of maintenance services, i.e. reduce 
machine shutdowns and shift maintenance activity from reactive to planned by identifying 
conditions which contribute to machine loss of life or machine stoppage. 

BG3: Product design optimization: Analyze data collected as a part of the monitoring effort 
to improve future design of the SSGTG. 

The workshop then proceeds with collaborative brainstorming of quality attribute scenarios 
that describe operationally the key architectural drivers. The scenarios are subsequently 
consolidated, refined, and prioritized. The business goals, the corresponding quality 
attributes, and the quality attribute scenarios from the workshop are summarized in Table 1. 

 
Table 1: Prioritized set of business goals and quality attribute scenarios 

Business 
Goal 

Goal 
Refinement 

Quality 
Attribute 

Quality Attribute Scenario Priority

BG 1 Ensure data 
confidentiality 
and integrity 

Security Sensor data shall be accessible and handled 
only by the authorized engineers, including 
during on-board storage and transmission. 

H 

BG 2 Provide early 
warning to 
avoid or 
minimize 
SSGTG 
outage 

Availability / 
Security / 

Performance 

Sensor data from SSGTG begins to indicate 
some malfunction. GenHealth shall predict a 
fault and notify the support engineers on-
board the ship and maintenance engineers in 
the central office within 30 minutes of the 
notification to prevent serious breakdown or 
stoppage. 

H 

BG 3 Support 
statistical 
modeling 

capabilities 

Performance For future design optimization, GenHealth 
shall provide statistical modeling capabilities 

on sensor data collected from subsystems 
within SSGTG 

M 

Once the quality attribute scenarios are finalized we can proceed with the design of the 
architecture through attribute driven design (Bass et al 2003). ADD begins by identifying the 
architectural tactics that match the quality attributes of the system. These tactics codify 
design knowledge, and in that regard are similar to architectural patterns, but differ in that 
they are derived from analytic models of quality attributes rather than personal, or anecdotal, 
experience (Bass et al 2003). The tactics that apply to the quality attributes in the GenHealth 
system are shown in Table 2. 

 

 

 

 

 



Table 2: Quality attributes and corresponding architectural tactics 
Busines
s Goal 

Quality 
Attribute 

Tactics and Tactic Categories 

BG 1 
BG2 

Security Resist attacks: 
– Authenticate users 
– Authorize users 
– Maintain data confidentiality 
– Maintain data integrity 

BG 2 Availability Fault preparation 
– Passive redundancy 
Fault detection 
– Heartbeat 
Fault recovery 
– State resynchronization 

BG 2 
BG 3 

Performance Resource demand: 
– Increase computational efficiency 
– Manage event rate 
– Control frequency of sampling 
Resource management: 
– Increase available resources 
– Maintain multiple copies of data 

 

Architecture Elaboration 
Architecture elaboration using ADD is an iterative process that starts with a single monolithic 
component responsible for all of the system functionality and then recursively decomposes 
this component by successively applying architectural tactics corresponding to a prioritized 
set of quality attribute requirements for the system. The final outcome is an architecture that 
is a tradeoff between conflicting quality requirements and reflects the priority order of the 
quality attribute requirements. We show the single component for GenHealth system in 
Figure 2 along with the key for all the component and connector diagrams that will be 
produced during the architecture elaboration process. 

 

 
Figure 2: The monolithic system 

The prioritized set of business goals and quality attribute requirements in Table 1 drive the 
subsequent elaboration process. BG1 related to security is concerned with data confidentiality 
and integrity. As shown in Figure 3, these responsibilities are moved to an access control 



component. Access control uses the authenticate user tactic to ensure the user is who he/she 
purports to be, and the authorize user tactic to ensure the authenticated user has the rights to 
access or modify either data or services. In addition, the data concentrator component uses 
the maintain data confidentiality tactic to protect data from unauthorized access over exposed 
communication links. This tactic makes use of encryption and secure sockets layer (SSL) to 
achieve this objective. The data concentrator also uses the maintain integrity tactic to ensure 
data is delivered as intended. This tactic can be implemented using checksums. 

 

 

Figure 3: Applying security tactics 
The next priorities are the availability, security and performance concerns related to BG2. 
The primary concern related to availability and performance is that when sensors onboard the 
SSGTG sense some fault, it is usually within 30 minutes of such an event that most serious 
faults would lead to machine stoppage or loss. Therefore, it is critical that action be taken 
within this 30 minute window to avoid significant damage and consequently a prolonged 
outage. The security concern is that notification be sent to concerned engineers in a manner 
that does not compromise a military mission, for instance. 

The availability architectural tactics that can be used to address this concern belong to fault 
preparation, detection and recovery categories (see Table 2). We show these in Figure 4 for 
the data logger component only but they can be easily applied to any other component of the 
system. 

Fault preparation tactics are performed routinely during normal operation to ensure that when 
a fault occurs, recovery can take place. We show this for the data logger component that uses 
a passive redundancy tactic. The primary data logger is responsible for receiving the sensor 



data from SSGTG. If it fails, a standby secondary can be promoted to the primary and take on 
the responsibility. The failed instance can be removed and a new instance of a secondary 
logger can be started.  

Fault detection tactics are associated with detecting and dealing with the fault. The data 
concentrator component periodically receives a heartbeat from the data loggers; failure to do 
so indicates a fault. In case of the primary data logger, the heartbeat would be the periodic 
delivery of the sensor data itself. Note that this is detection of a fault in the GenHealth system 
itself, rather than faults in the generator system – the architectural quality refers to the 
systems availability to notify local and remote maintenance engineers of the status of the 
generator system; not how the fault prediction algorithms themselves operate. 

Fault recovery tactics are concerned with restoring normal operations. When a primary data 
logger fails, the data concentrator promotes the secondary which then uses a state 
resynchronization tactic to upgrade its state before it can start operating as a primary. The 
primary data logger always maintains a log of its current state that is used by a secondary for 
state resynchronization in case of a failure. 

 

 

Figure 4: Applying availability tactics 
By breaking the system into these distinct components, the individual components can also 
address their specific latency (or performance) concerns using appropriate tactics (see Table 
2). For instance, the data logger component can reduce latency through the use of manage 
event rate and control sampling frequency tactics that manage the number of sensor data 
samples and the sampling frequency.  The data concentrator and analytics engine can use the 
increase computational efficiency tactic to manage the performance of the data 



encryption/compression and predictive analysis algorithms respectively.  All of these 
components can use increase available resources tactic as they can all be independently 
deployed. 

Finally for BG3 related to performance, the primary concern is to provide statistical modeling 
capability for future design optimization. This is a computationally intensive process and 
would impose a significant load on the processor and memory resources. The architectural 
tactics that can be used to address this concern belong to the resource management category 
(see Table 2). 

To manage this load we further decompose the system into a data mining engine with its 
corresponding data warehouse that can be used for offline analysis of historical data for 
future SSGTG design improvements. The data mining engine can now be allocated its own 
resources, an increase available resources tactic, and the data warehouse is populated by 
replicating the sensor data from the analytics database, a maintain multiple copies of data 
tactic. This is shown in Figure 5. 

 

 

Figure 5: Applying performance tactics 



Related Work 
It is clear from the recent literature that the quality of the architecture of systems is becoming 
of increasing interest and the need to understand the design choices that affect that quality is 
critical to the success of the system and its value over its lifetime. To help architects visualize 
these choices, and their consequences, several investigators have explored the formal 
definitions of some of the ‘ilities.’ Nilchani and Hastings (2007) examined system flexibility 
and state that it is such an important attribute that it requires separate analysis in terms of its 
value to the system. This work was then extended in an examination of changeability that 
incorporated flexibility along with adaptability, scalability, modifiability, and robustness in 
multi-attribute trade space exploration in an attempt to redress the “inability in the 
community to design and assess systems on the basis of these ‘ilities,’ especially in terms of 
concrete and unambiguous definitions.”(Ross et al. 2008). Fricke and Schulz (2004) had 
earlier defined changeability in these terms while expressing the importance of flexibility, 
agility, and adaptability to the success of a long-lived system. They proposed a set of 
principles for design for changeability including simplicity, modularity, independence, and 
autonomy that is entirely consistent with the architecture-centric approach here described. 
Engel and Browning (2007) addressed the same issues of design for adaptability but with a 
novel interpretation of financial options theory giving rise to their design for dynamic value 
using architecture options. For the most part, however, these studies tackle the thorny 
problem of weighing the choices of different design decisions with regards to the ‘ilities,’ 
rather than prescribing how to create a design that reflects those properties. 

Other authors have explored the practices and principles that help guide architects in 
developing high-quality architectures, however. Maier (2006), while addressing the need to 
reconcile software and system architectures, observed that systems engineering typically took 
a function-first approach and suggested that “functional and behavioral analysis techniques 
should emphasize the identification and documentation of the critical scenarios early in the 
process, and defer detailed functional specification.” To achieve this he suggests the use of 
the 4+1 model (Kruchten 1995) of architectural views so that the software and system 
architectures are consistent. Indeed, this cross-over of techniques from software to systems 
engineering has provided a rich ground for investigators. Neill and Holt (2002) proposed a 
combination of the UML and a formal model of temporal behavior for systems design, and in 
a series of articles, the use of Structured Analysis and Object-Oriented Analysis and Design 
were described for Command, Control, Communications, Computers, Intelligence, 
Surveillance, and Reconnaissance (C4ISR) architectures (Levis and Wagenhals 2000; 
Wagenhals et al. 2000; Bienvenu et al. 2000). With the emergence of SysML, such 
consistency between the software and systems domains has become considerably easier to 
achieve and has allowed for still more software engineering design approaches to cross-over 
into systems engineering. Rao et al (2008) propose combining SysML with colored petri-nets 
for system-of-system design using standard object-oriented analysis and design techniques, 
for example. With all these approaches, however, it is increasingly accepted that they do not 
handle systemic properties, such as quality attributes, well (Garlan 2000; Kazman et al. 2004; 
Sangwan et al. 2008a), which is precisely the objective of the approach presented in this 
work.  

Conclusions 
In this paper we have presented an architecture-centric approach to systems design based on 
quality attribute workshops and attribute-driven design that has been used successfully in 
software-centric systems and shows great promise in the systems domain. Unlike most 



system design approaches, the architecture-centric approach is driven from systemic quality 
attributes that are determined from both the business and technical goals of the system rather 
than just its functional requirements. This ensures that the architecture of the final system 
clearly, and traceably, reflects the most important goals for the system. While superficially 
the most important features of any system are its functions, in practicality it is the non-
functional requirements that have the greatest impact on a systems lifetime value since it is 
these requirements that determine how easily the system accepts future change, and how well 
the system meets the reliability and security needs of its operators and owners.  By making 
these requirements “first class citizens” the architecture meets these needs first. Furthermore, 
most non-functional requirements are systemic properties: they are properties that the entire 
system must reflect rather than just one component or subsystem. They, therefore, cannot 
easily be built into an existing architecture as is common in secondary design for reliability or 
maintainability efforts. In essence, these properties must be designed in from the beginning. 
Architecture-centric design addresses this directly by utilizing analytically-derived tactics to 
inform the architects design choices and shape the architecture. 

We demonstrated the technique in the design of a health-monitoring system for ship-board 
gas turbine electrical generators where the architecturally-significant requirements were 
reliability, performance, and security and produced a first-pass architecture that meets those 
requirements directly.  
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