
An Architecture-Centric Approach for Systems
Design

Colin J. Neill and Raghvinder S. Sangwan
Engineering Division

School of Graduate Professional Studies
The Pennsylvania State University

Malvern, PA 19355
cjneill | rsangwan@psu.edu

Daniel J. Paulish
Distinguished Member of Technical Staff

Siemens Corporate Research, Inc.
Princeton, NJ 08540

daniel.paulish@siemens.com

Copyright © 2009 by CJ Neill, RS Sangwan & DJ Paulish. Published and used by INCOSE with permission.

Abstract. The most critical requirements for the lifetime value of a system are its non-
functional requirements such as reliability, security, maintainability, changeability, etc. These
are collectively known as the ‘ilities’ and are typically addressed in system design once the
functional architecture has been developed. In this paper we propose the use of architecture-
centric design that modifies this standard workflow so that those non-functional
requirements, which actually reflect the true business needs, are addressed first. This ensures
that the final system better reflects and embodies those architecturally-significant
requirements rather than having them addressed secondarily. This is an important change
since the ‘ilities’ are systemic properties (properties of the system as a whole) rather than
systematic properties (properties of individual components or sub-systems) and are therefore
difficult to address once the functional architecture has been determined and the separation of
concerns is already somewhat completed. We provide an example of the approach based
around a simplified case study of an online, on-board health monitoring system for shipboard
gas turbine electricity generators that collects, filters, analyzes, transmits, and mines sensor
data from the generators subsystems.

Introduction
A system is considered successful if it meets stakeholder needs. On the surface this would
imply that designing the system to meet the requirements specification developed at project
inception would be sufficient, but in reality the stakeholder needs change continuously
throughout the development process, and in fact, throughout a system’s lifetime.
Correspondingly, the value the system provides to its users will diminish during its lifetime
unless action is taken to ensure that the system evolves to meet those changing needs
(Browning and Honor 2008; Sangwan et al. 2008a).

In order for the system to evolve the architecture must be designed accordingly. This has
typically been achieved by adapting the functional architecture – the architecture developed
to meet the functional requirements of the system – through design for reliability,
maintainability, usability, etc. (Blanchard and Fabrycky 2006). To this end, significant strides
have been made in recent years in the understanding of changeability, flexibility, and
adaptability, and how they impact architecture and architectural decisions (Fricke and Shulz
2005; Engel and Browning 2008) to aid in such processes. It is clear, then, that the ilities, as
they are known, are gaining importance in systems design. In fact, it could even be said that
they are now even more important to the lifetime value of a system than the functional
requirements – the functional requirements will change, but only if the architecture can
endure such change (Ross et al. 2008; Sangwan et al. 2008b).

Given this change in priorities, we are left with the challenge of “how to create systems with
the desired behaviors and to predict and suppress the undesired ones” (Crawley et al 2004). In
that case, might an alternative approach to architectural design, one that focuses primarily on
the non-functional requirements of the system, be advantageous? Instead of first
decomposing a system according to its gross functionality, the architectural design is driven
by the important quality attributes that ensure its longtime survival (Sangwan and Neill
2007). One approach that has been used successfully in software engineering, and shows
promise in systems engineering, is the combination of the Quality Attribute Workshops
(Bachmann et al., 2002; Barbacci et al., 2000) and Attribute Driven Design (Bass et al.,
2003). In this paper we will demonstrate architecture-centric design in systems engineering
using the combination of QAW and ADD through a simplified case study of a generator
health monitoring system.

Case Study
GenHealth is an online, real-time health and condition monitoring system for Ship Service
Gas Turbine Generators. The SSGTG consists of a gas turbine engine that turns a generator
that supplies electrical power to the ship and its subsystems through the ship’s switchboards.
A typical ship would use three such generators each supplying over 2.5 MW of electrical
power.

In such a hostile environment, equipment failure is frequent, with a mean time between
failure as low as 600 hours (25 days of round-the-clock operation) and any unscheduled
downtime can be very costly, not only financially, but also in terms of safety, and in military
applications, security. It is, therefore, important that faults are diagnosed early so that
breakdown can be avoided. Such predictive monitoring is both a selling feature of the
equipment, but also a cost-savings to the operator and maintainer. Additionally, on-board, on-
line monitoring could provide valuable insight into the turbine and generator operation and
reveal potential design improvements for future models by mining the data streams from the
fuel (rate, pressure), oil (temperature, pressure), power (RMS, harmonics, peak), torque, load,
and control sensors. To accomplish the manufacturer is seeking to develop an integrated
sensor-data gathering and storage system to deploy onto the ship which can then filter,
encrypt, and transmit this data to the ship-board operator’s systems for local monitoring and
maintenance as well as to the system support central offices for diagnostics and analysis and
the regional maintenance and modernization coordination offices for preventive repairs.

In order to meet these objectives the system must incorporate the following broad functional
requirements:

 Real-time access to the turbine, control system and generator data

 Statistical modeling of data for early fault prediction.

 Online monitoring of the equipment supported by a visualization of the data

 Ticketing service and event notification related to fault detection.

Figure 1 indicates the context for the GenHealth system. It receives sensor data for
diagnostics and analysis from the key subsystems of the SSGTG and interacts with many
different users that include the maintenance, support and design engineers.

Figure 1: GenHealth context diagram

Of course, this operational context of the SSGTG imposes considerable constraints on the
final system that must be accommodated. First and foremost is the reliability and throughput
of a data network within the generator and engine rooms of a ship. The heavy equipment and
the potentially turbulent, hot, and humid conditions make for a noisy electrical and physical
environment in which to transmit large volumes of sensor data from the SSGTG subsystems.
Correspondingly, reconciling this sensor data, synchronizing it to a consistent clock, storing it
when the network is unreliable, filtering it for upload to the system command’s central office,
and analyzing it both locally and centrally for diagnosis and evaluation are all made more
difficult. In addition, the data must be encrypted to protect the ship’s operators and an audit
trail is also necessary for non-repudiation.

Architecture-Centric Design
The first step in architecture-centric design is to determine the most critical systemic
properties that the architecture must embody. On the surface we may consider all systemic
properties important (the system must be secure, reliable, maintainable, robust, modifiable,
etc.) but in practice the relative importance of each property varies from system to system.
Furthermore, such coarse-grained requirements are not particularly useful in design. We may
desire the system be modifiable, but the real question is modifiable with respect to which
aspects, when, and with how much effort? (Sangwan et al 2008a)

To answer such questions we employ Quality Attribute Workshops. These are facilitated
focus groups of stakeholders which establish a prioritized set of architecturally significant
requirements in the form of quality attribute scenarios – “short stories that describe an
interaction with the system that exercises a particular quality [with] at the very least, a clear
stimulus and response” (Barbacci et al 2000)

The workshop begins with a stakeholder presentation on the business and mission goals for
the system under consideration followed by identification of key architectural drivers
reflecting those core goals. The GenHealth system has the following business goals:

BG1: Improve support efficiency: Provide remote capability to troubleshoot SSGTG
problems.

BG2: Improve availability: Monitor the health of SSGTG to assess its state in order to predict
potential problems and allow the early scheduling of maintenance services, i.e. reduce
machine shutdowns and shift maintenance activity from reactive to planned by identifying
conditions which contribute to machine loss of life or machine stoppage.

BG3: Product design optimization: Analyze data collected as a part of the monitoring effort
to improve future design of the SSGTG.

The workshop then proceeds with collaborative brainstorming of quality attribute scenarios
that describe operationally the key architectural drivers. The scenarios are subsequently
consolidated, refined, and prioritized. The business goals, the corresponding quality
attributes, and the quality attribute scenarios from the workshop are summarized in Table 1.

Table 1: Prioritized set of business goals and quality attribute scenarios

Business
Goal

Goal
Refinement

Quality
Attribute

Quality Attribute Scenario Priority

BG 1 Ensure data
confidentiality
and integrity

Security Sensor data shall be accessible and handled
only by the authorized engineers, including
during on-board storage and transmission.

H

BG 2 Provide early
warning to
avoid or
minimize
SSGTG
outage

Availability /
Security /

Performance

Sensor data from SSGTG begins to indicate
some malfunction. GenHealth shall predict a
fault and notify the support engineers on-
board the ship and maintenance engineers in
the central office within 30 minutes of the
notification to prevent serious breakdown or
stoppage.

H

BG 3 Support
statistical
modeling

capabilities

Performance For future design optimization, GenHealth
shall provide statistical modeling capabilities

on sensor data collected from subsystems
within SSGTG

M

Once the quality attribute scenarios are finalized we can proceed with the design of the
architecture through attribute driven design (Bass et al 2003). ADD begins by identifying the
architectural tactics that match the quality attributes of the system. These tactics codify
design knowledge, and in that regard are similar to architectural patterns, but differ in that
they are derived from analytic models of quality attributes rather than personal, or anecdotal,
experience (Bass et al 2003). The tactics that apply to the quality attributes in the GenHealth
system are shown in Table 2.

Table 2: Quality attributes and corresponding architectural tactics
Busines
s Goal

Quality
Attribute

Tactics and Tactic Categories

BG 1
BG2

Security Resist attacks:
– Authenticate users
– Authorize users
– Maintain data confidentiality
– Maintain data integrity

BG 2 Availability Fault preparation
– Passive redundancy
Fault detection
– Heartbeat
Fault recovery
– State resynchronization

BG 2
BG 3

Performance Resource demand:
– Increase computational efficiency
– Manage event rate
– Control frequency of sampling
Resource management:
– Increase available resources
– Maintain multiple copies of data

Architecture Elaboration
Architecture elaboration using ADD is an iterative process that starts with a single monolithic
component responsible for all of the system functionality and then recursively decomposes
this component by successively applying architectural tactics corresponding to a prioritized
set of quality attribute requirements for the system. The final outcome is an architecture that
is a tradeoff between conflicting quality requirements and reflects the priority order of the
quality attribute requirements. We show the single component for GenHealth system in
Figure 2 along with the key for all the component and connector diagrams that will be
produced during the architecture elaboration process.

Figure 2: The monolithic system

The prioritized set of business goals and quality attribute requirements in Table 1 drive the
subsequent elaboration process. BG1 related to security is concerned with data confidentiality
and integrity. As shown in Figure 3, these responsibilities are moved to an access control

component. Access control uses the authenticate user tactic to ensure the user is who he/she
purports to be, and the authorize user tactic to ensure the authenticated user has the rights to
access or modify either data or services. In addition, the data concentrator component uses
the maintain data confidentiality tactic to protect data from unauthorized access over exposed
communication links. This tactic makes use of encryption and secure sockets layer (SSL) to
achieve this objective. The data concentrator also uses the maintain integrity tactic to ensure
data is delivered as intended. This tactic can be implemented using checksums.

Figure 3: Applying security tactics
The next priorities are the availability, security and performance concerns related to BG2.
The primary concern related to availability and performance is that when sensors onboard the
SSGTG sense some fault, it is usually within 30 minutes of such an event that most serious
faults would lead to machine stoppage or loss. Therefore, it is critical that action be taken
within this 30 minute window to avoid significant damage and consequently a prolonged
outage. The security concern is that notification be sent to concerned engineers in a manner
that does not compromise a military mission, for instance.

The availability architectural tactics that can be used to address this concern belong to fault
preparation, detection and recovery categories (see Table 2). We show these in Figure 4 for
the data logger component only but they can be easily applied to any other component of the
system.

Fault preparation tactics are performed routinely during normal operation to ensure that when
a fault occurs, recovery can take place. We show this for the data logger component that uses
a passive redundancy tactic. The primary data logger is responsible for receiving the sensor

data from SSGTG. If it fails, a standby secondary can be promoted to the primary and take on
the responsibility. The failed instance can be removed and a new instance of a secondary
logger can be started.

Fault detection tactics are associated with detecting and dealing with the fault. The data
concentrator component periodically receives a heartbeat from the data loggers; failure to do
so indicates a fault. In case of the primary data logger, the heartbeat would be the periodic
delivery of the sensor data itself. Note that this is detection of a fault in the GenHealth system
itself, rather than faults in the generator system – the architectural quality refers to the
systems availability to notify local and remote maintenance engineers of the status of the
generator system; not how the fault prediction algorithms themselves operate.

Fault recovery tactics are concerned with restoring normal operations. When a primary data
logger fails, the data concentrator promotes the secondary which then uses a state
resynchronization tactic to upgrade its state before it can start operating as a primary. The
primary data logger always maintains a log of its current state that is used by a secondary for
state resynchronization in case of a failure.

Figure 4: Applying availability tactics
By breaking the system into these distinct components, the individual components can also
address their specific latency (or performance) concerns using appropriate tactics (see Table
2). For instance, the data logger component can reduce latency through the use of manage
event rate and control sampling frequency tactics that manage the number of sensor data
samples and the sampling frequency. The data concentrator and analytics engine can use the
increase computational efficiency tactic to manage the performance of the data

encryption/compression and predictive analysis algorithms respectively. All of these
components can use increase available resources tactic as they can all be independently
deployed.

Finally for BG3 related to performance, the primary concern is to provide statistical modeling
capability for future design optimization. This is a computationally intensive process and
would impose a significant load on the processor and memory resources. The architectural
tactics that can be used to address this concern belong to the resource management category
(see Table 2).

To manage this load we further decompose the system into a data mining engine with its
corresponding data warehouse that can be used for offline analysis of historical data for
future SSGTG design improvements. The data mining engine can now be allocated its own
resources, an increase available resources tactic, and the data warehouse is populated by
replicating the sensor data from the analytics database, a maintain multiple copies of data
tactic. This is shown in Figure 5.

Figure 5: Applying performance tactics

Related Work
It is clear from the recent literature that the quality of the architecture of systems is becoming
of increasing interest and the need to understand the design choices that affect that quality is
critical to the success of the system and its value over its lifetime. To help architects visualize
these choices, and their consequences, several investigators have explored the formal
definitions of some of the ‘ilities.’ Nilchani and Hastings (2007) examined system flexibility
and state that it is such an important attribute that it requires separate analysis in terms of its
value to the system. This work was then extended in an examination of changeability that
incorporated flexibility along with adaptability, scalability, modifiability, and robustness in
multi-attribute trade space exploration in an attempt to redress the “inability in the
community to design and assess systems on the basis of these ‘ilities,’ especially in terms of
concrete and unambiguous definitions.”(Ross et al. 2008). Fricke and Schulz (2004) had
earlier defined changeability in these terms while expressing the importance of flexibility,
agility, and adaptability to the success of a long-lived system. They proposed a set of
principles for design for changeability including simplicity, modularity, independence, and
autonomy that is entirely consistent with the architecture-centric approach here described.
Engel and Browning (2007) addressed the same issues of design for adaptability but with a
novel interpretation of financial options theory giving rise to their design for dynamic value
using architecture options. For the most part, however, these studies tackle the thorny
problem of weighing the choices of different design decisions with regards to the ‘ilities,’
rather than prescribing how to create a design that reflects those properties.

Other authors have explored the practices and principles that help guide architects in
developing high-quality architectures, however. Maier (2006), while addressing the need to
reconcile software and system architectures, observed that systems engineering typically took
a function-first approach and suggested that “functional and behavioral analysis techniques
should emphasize the identification and documentation of the critical scenarios early in the
process, and defer detailed functional specification.” To achieve this he suggests the use of
the 4+1 model (Kruchten 1995) of architectural views so that the software and system
architectures are consistent. Indeed, this cross-over of techniques from software to systems
engineering has provided a rich ground for investigators. Neill and Holt (2002) proposed a
combination of the UML and a formal model of temporal behavior for systems design, and in
a series of articles, the use of Structured Analysis and Object-Oriented Analysis and Design
were described for Command, Control, Communications, Computers, Intelligence,
Surveillance, and Reconnaissance (C4ISR) architectures (Levis and Wagenhals 2000;
Wagenhals et al. 2000; Bienvenu et al. 2000). With the emergence of SysML, such
consistency between the software and systems domains has become considerably easier to
achieve and has allowed for still more software engineering design approaches to cross-over
into systems engineering. Rao et al (2008) propose combining SysML with colored petri-nets
for system-of-system design using standard object-oriented analysis and design techniques,
for example. With all these approaches, however, it is increasingly accepted that they do not
handle systemic properties, such as quality attributes, well (Garlan 2000; Kazman et al. 2004;
Sangwan et al. 2008a), which is precisely the objective of the approach presented in this
work.

Conclusions
In this paper we have presented an architecture-centric approach to systems design based on
quality attribute workshops and attribute-driven design that has been used successfully in
software-centric systems and shows great promise in the systems domain. Unlike most

system design approaches, the architecture-centric approach is driven from systemic quality
attributes that are determined from both the business and technical goals of the system rather
than just its functional requirements. This ensures that the architecture of the final system
clearly, and traceably, reflects the most important goals for the system. While superficially
the most important features of any system are its functions, in practicality it is the non-
functional requirements that have the greatest impact on a systems lifetime value since it is
these requirements that determine how easily the system accepts future change, and how well
the system meets the reliability and security needs of its operators and owners. By making
these requirements “first class citizens” the architecture meets these needs first. Furthermore,
most non-functional requirements are systemic properties: they are properties that the entire
system must reflect rather than just one component or subsystem. They, therefore, cannot
easily be built into an existing architecture as is common in secondary design for reliability or
maintainability efforts. In essence, these properties must be designed in from the beginning.
Architecture-centric design addresses this directly by utilizing analytically-derived tactics to
inform the architects design choices and shape the architecture.

We demonstrated the technique in the design of a health-monitoring system for ship-board
gas turbine electrical generators where the architecturally-significant requirements were
reliability, performance, and security and produced a first-pass architecture that meets those
requirements directly.

References
Bachmann, F., Bass, L., Klein, M. 2002. Illuminating the fundamental contributors to
software architecture quality (CMU/SEI-2002-TR-025), Pittsburgh, PA: Software
Engineering Institute Carnegie Mellon University, August 2002.

Barbacci, M., Ellison, R., Weinstock, C., Wood, W. 2000. Quality attribute workshop
participants handbook (CMU/SEI-2000-SR-001), Pittsburgh, PA: Software Engineering
Institute Carnegie Mellon University, July 2000.

Bass, L., Clements, P., and Kazman, R. 2003. Software architecture in practice, Second
Edition, Boston, MA: Addison-Wesley, 2003.

Bienvenu, M.P., Shin, I. and Levis, A.J. 2000. C4ISR Architectures: III. An object-oriented
approach for architecture design. Systems Engineering, Vol. 3, No. 4, 2000 pp 288-312.

Blanchard, B.S. and Fabrycky, W.J. 2006. Systems engineering and analysis, 4th Ed. Pearson
Prentice Hall, 2006.

Browning, T.R. and Honour, E.C. 2008. Measuring the Life-cycle Value of Enduring
Systems. Systems Engineering, Vol. 11, No. 3, 2008, pp 187-202.

Crawley, E., deWeck, O., Eppinger, S., Magee, C., Moses, J., Seering, W., Schindall, J.,
Wallace, D. and Whitney, D. 2004. The influence of architecture on engineering systems,
MIT Eng Syst Symp, March 29–31, Cambridge, MA, 2004.

Engel, A. and Browning, T.R. 2008. Designing systems for adaptability by means of
architecture options. Systems Engineering, Vol. 11, No. 2, May 2008, pp 125-146.

Fricke, E. and Schulz A.P. 2005. Design for Changeability (DfC): Principles to enable
changes in systems throughout their entire lifecycle. Systems Engineering, Vol. 8, No. 4,
2005 pp 342-359.

Garlan, D., 2000. Software architecture and object-oriented systems, in Proceedings of the
IPSJ Symposium 2000, Tokyo, Japan, August 2000.

Kazman, R., Kruchten, P., Nord, R., and Tomayko, J. 2004. Integrating software-
architecture-centric methods into the Rational Unified Process (CMU/SEI-2004-TR-011),
Pittsburgh, PA: Software Engineering Institute Carnegie Mellon University, 2004.

Kruchten, P.B. 1995. A 4+1 view model of software architecture, IEEE Software, 12(6),
November 1995, pp. 42–50.

Levis, A.H and Wagenhals, L.W. 2000. C4ISR Architectures: I. Developing a process for
C4ISR architecture design. Systems Engineering, Vol. 3, No. 4, 2000 pp 225-247.

Maier, M.W. 2006. System and software architecture reconciliation. Systems Engineering,
Vol. 9, No. 2, 2006. pp 146-149.

Neill, C.J. and Holt, J.D. 2002. Adding temporal modeling to the UML to support systems
design. Systems Engineering, Vol. 5, No. 3, 2002, pp. 213-222

Nilchiani, R. and Hastings, D.E. 2007. Measuring the value of flexibility in space systems: A
six-element framework. Systems Engineering, Vol. 10, No. 1, 2007 pp 26-44.

Rao, M., Ramakrishnan, S. and Dagli, C. 2008. Modeling and simulation of net centric
system of systems using systems modeling language and colored petri-nets: A demonstration
using the Global Earth Observation System of Systems. Systems Engineering, Vol. 11, No. 3,
2008 pp 203-220.

Ross, A.R, Rhodes, D.H., and Hastings, D.E. 2008. Defining changeability: Reconciling
flexibility, adaptability, scalability, modifiability, and robustness for maintaining system
lifecycle value. Systems Engineering, Vol. 11, No. 3, 2008 pp 246-262.

Sangwan, R.S. and Neill, C.J. 2007. How business goals drive architectural design.
Computer. Vol. 40, No. 8, August 2007. pp 101-103.

Sangwan, R.S., Neill, C.J., Bass, M, and El Houda, Z. 2008a. Integrating software
architecture-centric methods into object-oriented analysis and design, Journal or Systems and
Software. Vol. 81, Iss. 5, May 2008, Pages 727-746.

Sangwan, R.S., Li-Ping Lin, and Neill, C.J. 2008b. Structural complexity in architecture-
centric software evolution, Computer, Vol. 41, No. 10, October 2008, pp. 99-102.

Wagenhals, L.W., Shin, I., Kim, D., and Levis, A.H. 2000. C4ISR Architectures: II. A
structured analysis approach for architecture design. Systems Engineering, Vol. 3, No. 4,
2000 pp 248-287.

Author Biographies
Dr. Colin J. Neill is associate professor of software engineering at the Penn State School of
Graduate Professional Studies. He teaches in the graduate systems engineering, software
engineering, and engineering management programs. He holds degrees in Electrical and
Electronic Engineering, Communication Systems, and Software and Systems Engineering
from the University of Wales Swansea. He is the author of over 60 articles on software and
system design, architectural quality and complexity, and requirements engineering.

Dr. Raghvinder S. Sangwan is assistant professor of software engineering at the Penn State
School of Graduate Professional Studies. He holds a Ph.D. in computer and information
sciences from Temple University. His research and teaching involves analysis, design, and

development of system architectures, and automatic and semi-automatic approaches to
assessment of their design. Prior to joining Penn State Great Valley, he worked as a lead
architect for Siemens on geographically distributed development projects, building
information systems for integrated health networks. He is a technical consultant for Siemens
Corporate Research in Princeton.

Dr. Daniel J. Paulish is a Distinguished Member of Technical Staff at Siemens Corporate
Research in Princeton, New Jersey with over twenty years experience in software engineering
management and is currently the leader of the Siemens Software Initiative in the Americas.
He is the author of Architecture-Centric Software Project Management and a co-author of
Global Software Development Handbook, and Software Metrics: A Practitioner's Guide to
Improved Product Development. Dr. Paulish is formerly an industrial resident affiliate at the
Software Engineering Institute of Carnegie Mellon University, and he holds a Ph.D. in
Electrical Engineering from the Polytechnic Institute of New York.

	Prev:
	Next:
	Close:
	First:

