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Abstract: 
 
Emergent behaviors exist in biological systems, physical systems and human performance.  It is 
an inherited nature of a System-of-Systems (SoS).  SoS displays a global complexity that cannot 
be adequately managed by hierarchical structures and central control; therefore, traditional 
systems engineering and management approaches are necessary but insufficient for a SoS.   
 
Little is currently known about constructing an interoperable network of systems and the 
incorporation of emergent behaviors.  The purpose of this panel is to explore the possibilities of 
developing an architecture model including the emergent behavior.  
 
The challenge is how to understand the initiation mechanisms of the emergent behaviors for a 
particular system architecture model so that the resident beneficial or harmful emergent 
behaviors can be enhanced or mitigated with selected changes in the model.  Is model-based the 
only feasible approach to develop the architecture model with emergent behavior?  If this is the 
answer, what kind of modeling methodology?  Should it be solely based on agent-based 
modeling or a combination of SysML and agent-based?  Is SysML ready to deal with emergent 
behavior? 
  
For a non-modeling consideration, can we plan for the beneficial or harmful emergent properties?  
How do we overcome development friction that is bound to arise when there are complex, 
independent, overlapping governances, for example, the customer requirements for a SoS evolve 
over time, etc.?  There may only be SoS modeling at the level of the government agency, which 
actually procures but does not build, and not at the level of contractors who build the next 
generation of technologies. 
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Complex adaptive systems and emergence existed long before their terms of art were 
coined and their consequences appreciated. However, the greater prevalence today of 
social networks and net centricity and their impact upon the creation and operation of 
complex adaptive systems accelerates our interest and the need for improving our 
understanding of emergence, and both utilizing its positive possibilities and suppressing 
or confining its negative effects. 
 
We can nonetheless learn from the past, and anticipate issues that the future will bring. 
Both are addressed in terms of confining negative effects: the past in terms of lessons 
learned, and the future in terms of the new forces attacking information assurance that 
accompany net centricity that have the power to disrupt complex adaptive systems by 
inducing negative emergence. These are listed below along with the lessons and 
challenges they provide. In all cases, modeling and simulation play a strong role in 
defining and coping with emergence, and in several cases the immaturity of modeling and 
simulation to address underlying phenomena contribute to the resulting emergence. 
 
1 - Landing on the Moon; creating a system to suppress inherently difficult-to-predict 
emergent phenomena  
 
2 - Guided missile flight stability; coping with after the fact-experienced emergence 
 
3 - Electro-Optical Image Generation; coping with after the fact-experienced emergence 
 
4 - JSF Weight Explosion; coping with the absence of accurate models and the 
consequent after the fact-experienced emergence 
 
5 - VH-71 Requirements Miasma; avoiding self-induced emergence 
 
6 - MANET Networks and FCS; coping with emergence in the absence of theory 
 
7 - Information Assured Networks, the need for robustness and multiple lines of defense, 
and the resultant uncertainty regarding emergen                                                             
 
The lessons vary from example to example, but these examples are real, and I believe the 
lessons are enduring.                                                                                                   
 
The first example is a classic case where the environment was unknowable. There was, at 
the time a soft landing on the moon was contemplated, in 1960, insufficient knowledge of 
the properties of the moon's surface to use to design the lunar descent profile, the landing 
gear, and the spacecraft it supported. There was a program planned to improve that 
knowledge by taking images from a hard landing spacecraft and transmitting them back 
to the earth before it crashed on the moon, but that program failed in its early launches 
and did not produce any timely data. All then that could be relied upon to estimate the 



hardness/sponginess and contours of the lunar surface were radar returns, optical images, 
and geological suppositions, and all experts agreed that these were inadequate for 
providing accurate lunar surface estimates. However the program succeeded by 
undertaking a campaign of experimentation that included extensive modeling and 
simulation, and used these data to design and implement a robust solution. 
 
Examples 2 and 3 represent cases where in hind sight simulation and modeling could 
have been employed to predict a serious system problem, but were not with the result that 
the problems were discovered in flight test with pre-production proto-types, and were 
very expensive to fix as was, of itself, the time spent creating and demonstrating the fix. 
As a result, simulation and modeling were, at that point, no longer the proper avenues of 
correction and it was much more expeditious to build alternative fixes and flight test them 
to find one that was satisfactory. 
 
Example 4 is an illustration of a hard to accept but real situation: there are fields for 
which accurate models do not exist. Accurate weight prediction for aircraft whose 
features depart significantly from prior versions is far from guaranteed. In this case, two 
independent and expert groups made state of the art predictions that were in general 
agreement, but both were significantly in error. The result was a very serious disruption 
of a complicated and expensive program as an overweight unacceptable condition 
emerged. This argues for the early identification of areas for which accurate predictive 
techniques do not exist, and building early prototypes that allow emergence to be 
experienced at a time when its consequences can be more easily accommodated. 
 
Example 5 makes the case that you are asking for emergence if you enter system 
development before you stabilize the requirements, i.e., before you understand what you 
need to build. This is an old story that has been understood in many fields for many 
years. What is more intriguing is how, knowing this, the very competent participants 
could have allowed it to happen. The new story to be explained in the paper is that of the 
social and political underpinning that caused these veterans to do something that was so 
basically flawed in retrospect.  
 
Example 6 illustrates that beyond lacking accurate models as in example 4, there are field 
for which there are no models that predict performance and therefore experimentation is 
the only way to contain emergence. 
 
And example 7 is similar except that it is not a lack of models, but an inability to predict 
external forces that, in this case, disrupt networks whose operation is necessary for 
enterprises to succeed. Emergence is contained in the case be continual expert 
maintenance that is vigilant at detecting emergent properties, and constructing real time 
corrective compensation. 
 
A consideration of these 7 examples provides insight into the causes and containment of 
harmful emergence. 
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The architecting, design, and management of System-of-Systems (SoS) is complicated 

by the fact that a SoS exhibits certain unique properties such as changing boundaries, 

lack of central control, and emergence. Exacerbating the problem is the fact that there is 

no standard definition of a SoS. Therefore, at the outset, I offer the following definition of 

a SoS to begin a dialogue:  

“A SoS is a complex ensemble of independent systems developed and introduced over 

different time frames by multiple independent authorities to provide multiple, 

interdependent capabilities in support of multiple missions. The capability of a SoS 

typically exceeds the sum of the capabilities of the member systems.”  

With this definition, we can begin to distinguish between a traditional system and a SoS.   

Table 1.  Traditional System Versus SoS [Madni, 2006; Madni, 2007a]  

   



From the foregoing definition and comparison of SoS with a traditional system, certain 

SoS architecting challenges become apparent: (a) overcoming development friction that 

is bound to arise when there are complex, overlapping governances; (b) getting 

stakeholders to develop shared interests when, in fact, they are associated with multiple, 

independent concurrent development with overlapping governances; (c) maintaining 

coherence at the SoS level when independently planned programs continue to pull in 

different directions; (d) achieving robustness despite inability to perform critical tradeoffs 

(remember, complexity renders certain tradeoffs incalculable); and (e) maintaining 

interoperability in the face of dynamically changing, uncertain information requirements 

[Salasin and Madni, 2007].  

An example of a SoS that exhibits these characteristics is the National Air Transportation 

System (NATS). The NATS is a geographically-distributed, networked enterprise. In 

such an enterprise, the different parts of the enterprise tend to optimize their respective 

objectives which can often be in conflict with each other.  The challenge is determining 

how to maintain global coherence while responding to changes and opportunities at both 

the global and local levels of the enterprise. In the case of NATS, its architecture is 

driven by the goals of international commerce.  It comprises multiple systems such as 

the Air Traffic Control System (ATCS), the Airlines, Airport Operations, and, of course, 

the Consumer Complex.  Each system is concerned with maximizing its own objectives.  

For example: the ATCS is concerned with flight safety and maximizing the use of 

airspace; the airlines are concerned with maximizing their bottom line; the airport 

operations are concerned with conserving costs while providing acceptable service; and, 

the consumers are interested in getting best value (i.e., a combination of cost, 

timeliness, and experience) from the rest of the enterprise.  Since changes can occur in 

any of these systems and cross-cutting functions, NATS needs to be able to respond to 

such changes by marshalling the required resources in the physical world and on the net 

and bringing them to bear at the point of need. 

Today, there is little guidance on how to architect a SoS.  This is not surprising because 

architecting a SoS is complicated by several factors. First, SoSs are dynamic entities in 

that systems are added, modified, or removed as mission requirements change.  While it 

may be possible to address a subset of these changes a priori, several changes need to 

be handled on the fly.  Second, the technological infrastructure needs to change with 

technological advances and changes in Quality of Service (QoS) requirements.  These 

considerations imply that a SoS architecture needs to not only enable the evolution of 



the SoS, but also be evolvable itself!  Third, we need to be able to assess the potential 

impact of not completely knowing a priori the architecture of a SoS on the quality 

attributes and performance of the SoS [Madni, 2008; Madni, 2007b].  In fact, is it even 

possible to evaluate the quality attributes under such conditions?  

Fortunately, it is possible to identify a few critical success factors to get rolling.  First, we 

need to do as much up-front engineering as possible (evolvability is costly and difficult to 

infuse later).  Second, we need to avoid “SoS architecting myopia” by mapping mission 

capability requirements on to SoS architectural nodes to assess coverage and to identify 

and fill gaps.  Third, we need to focus on the most challenging and the most likely 

operational scenarios in defining architectural requirements.  Fourth, we need to define 

semantics and models to share best practices.  Fifth, we need to employ an iterative 

process in SoS architecting to continually increase our understanding and reduce risks.  

Sixth, we need to experiment with “guided” emergence [Madni, 2006] by creating 

conditions and policies (e.g., incentives/disincentives) that help produce the desired SoS 

capabilities and behaviors.  

An example of “guided emergence” is that of city planning. A city evolves through the 

collective action of multiple individuals/agents acting locally over time. A city emerges 

and changes over time through loosely coordinated and regulated action of multiple 

individuals/agents. An evolving city exhibits coherence without central control through 

mechanisms that regulate local action [SEI Report, 2006]. Mechanisms include city 

regulations, communications, distribution and emergency services. These serve as 

incentives and disincentives. A city is built gradually in parts by people, companies and 

communities to serve their own purpose. A city grows and thrives based on cultural and 

economic necessities. A city is always in a state of perpetual change (construction, 

repairs, demolitions, operations). If one were to substitute the term “SoS” for “city,” one 

can find immediate parallels and develop insights into how an SoS can be architected, 

designed and managed.  

In closing, these thoughts are meant to stimulate a dialogue in the systems engineering 

community. This is only the beginning of our shared journey in understanding emergent 

properties of a SoS.  
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Architecting is the process of structuring the components of a system, their interrelationships and their 
evolution over time. It is related to the structure properties of a system. Successful architecture 
development is important as it plays a dominating role in integration of component systems. However, 
classical system architecting is changing as we are increasingly becoming a networked society. This is 
true in industry, individuals, and all forms of government. Society is growing increasingly dependent on 
these networks. It is possible to combine these systems and make them trans-national; it thus provides an 
opportunity to respond to the dynamically changing needs imposed by global events. Consequently, this 
creates a need for systems architectures that will be in effect for the duration of the event, possibly 
necessitating the need to develop new systems architecture for the next mission or event. This fact is 
important, as it complicates the systems architecting activities. Hence, architecture becomes a dominating 
but confusing concept in capability development. These systems are generally referred as System of 
Systems (SoS), which is a collaborative meta-level system structure where independent complex systems 
are integrated to provide increased functionality and performance capabilities.  

The loss of any part of the system will degrade the performance or the capabilities of the whole. They 
need to evolve in time to accommodate changes in requirements and technology. Hence, systems 
engineers need to monitor and evolve adapt systems architectures in a timely manner. This eliminates the 
classical concept that is used in the past, namely, that architectures are static.  

These systems evolve by adding components, and as in the case of electrical utilities, creating a 
potential for hidden robustness, e.g. load sharing across electric utilities, and also giving rise to a potential 
for cascading failures as well; as characterized by the August 14, 2003 blackout in Northeast U.S. 
Individual systems within the SoS may be developed to satisfy the peculiar needs of a given group, the 
information they share being so important that the loss of a single system may deprive other systems of 
the data needed to achieve even minimal capabilities.  

Unfortunately, the current body of knowledge in systems research is not sufficient for effective design 
and operation of these types of systems. There is a need to push the boundaries of technology and systems 
engineering and systems architecting research both in industry and research universities to meet the 
challenges imposed by new demands. There is an increased uncertainty about system requirements 
coupled with continuous changes in technology and organization structures. Diverse spectrums of 
missions and operations require the development of system architectures that can adapt and evolve. .  

 
Different complex system of  systems can be identified by analyzing the system attributes such as 
interdependent, independent, distributed, cooperative, competitive, and adaptive. Recent system 
definitions can be based on these attributes. For example, it is possible to define a Family of Systems 
(FoS) as a set or arrangements of independent systems that can be arranged or interconnected in various 
ways to provide capabilities. The mix of systems can be tailored to provide desired capabilities, 
dependent on the situation. Although these systems can be providing useful capabilities independently, in 
collaboration they can more fully satisfy a more complex and challenging capability. We can also define 
intelligent enterprise systems in terms of cooperative, competitive and adaptive systems that evolve to 
respond to changing business conditions. System of systems can be defined in terms of interdependence 
attribute where a set or arrangements of interdependent systems are connected to provide a given 
capability. While individual systems within the SoS may be developed to satisfy the peculiar needs of a 
given user group, the information they share is so important that the loss of a single system may deprive 
other systems of the data need to achieve even minimal capabilities.  



Complexity Theory is a beneficial approach to define and understand the identity of a system. It helps 
in understanding how complex systems are affected from their environments and how a system learns by 
proposing alternative ways for improvement. It also answers the question that why some good predictions 
and solutions can be obstructed by dynamic nature of the environment.  

 
1. Long term planning is impossible: There are non-linear relationships among components of complex 
systems. Therefore, long-term planning is impossible. Systems of systems are composed of complex 
systems and a meta-system behavior cannot be derived by analyzing the behavior of the component sub-
systems.  
2. Dramatic change can occur unexpectedly: Complexity Theory claims that small perturbations can also 
cause huge changes on the overall system behavior. Changes are inevitable and impact of changes is not 
always obvious. This property is the reason for cascading failures in System of Systems. Since there is 
strong interdependency among systems, a small change can cause a chain reaction and result in cascading 
failures.  
3. Complex systems exhibit patterns and short-term predictability: Long-term forecasting is impossible 
but short-term forecasting and describing the behavioral model of systems is possible. Therefore, next 
time period behavior of systems can be predicted when reasonable specifications of conditions at one time 
period are given. System of System testing and validation is based on this characteristic. Architecture 
performance evaluations focus on short term forecasting of system architecture behavior.  
4. Organizations can be turned to be more innovative and adaptive: Complexity Theory suggests that 
emergent order and self organization provide a robust solution for organic networks to be successful in 
competitive and rapidly changing environmental conditions. The evolutionary characteristic of the SoS 
architecting results in emergent capabilities that individual systems are not capable of achieving. System 
architects can benefit from this property of by designing SoS components that can self adapt and self 
organize to changing environmental conditions. In the talk these concepts will be discussed and 
importance of systems architecting will be emphasized in creating the complex engineering system of 
this century.  

 



Dorothy McKinney: How to Engineer the Emergent Behavior of A 
System-of-Systems 
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Developing, refining and controlling System-of-Systems (SoS) present many challenges.  
It is instructive to consider how traditional systems engineering and management 
approaches could be extended and augmented to address the complexities of a System-of-
Systems.   In considering different approaches, it would be optimal to enable participants 
in System-of-Systems development and use to change their perspective from the more 
deterministic view we have traditionally had of system development (“We can decide 
what the system will do and how it will do it”) to a more opportunistic view (“We need to 
ready ourselves to ‘catch the wave’ and ‘surf the ocean of possibilities’ to surmount, or 
even harness, the ‘waves’ of emergent behavior we encounter in our attempt to use the 
System of Systems for our intended purposes”).  In other words, we have the dual 
challenges of: 

• adding new approaches and techniques to deal with the complexities of System 
of System development and  

• changing the culture of our organizations to be able to handle the human and 
organizational complexity and changes required to make effective use of System-
of-Systems potential. 

 
The table below identifies some of the non-traditional challenges we face in engineering 
a System-of-Systems, and dealing with the new demands imposed by emergent behavior.  
To address these challenges, we can try to control events long enough to get a System-of-
Systems working to meet formal functional requirements and quality of service targets.   
This is the “get it right the first time” approach.  Or we can try to get a System-of-
Systems functioning, and then refine its behavior to move closer to desired functional 
capabilities and quality of service.  This is the “get it working first, then try to evolve it in 
desired directions” approach. 
 
The latter approach may be more practical when resources are very limited and/or 
requirements are changing more quickly than System-of-Systems capabilities can be 
completed and delivered.  If we take this latter refinement approach, we need 
significantly different mechanisms for accounting to stakeholders than the conventional 
plan-versus-actual progress reporting.  Opportunistic refinement of System-of-Systems 
capabilities probably requires much more of a continuing “sale to stakeholders” than does 
a conventional plan-and-perform-to-plan approach.  This kind of “salesmanship” has not 
historically been a key requirement for effective systems engineering, and may pose real 
personal growth challenges for many individuals in our profession.  The table below does 
not attempt to address how the needed new mechanisms could be “sold” to stakeholder 
communities as credible and reliable, but that is clearly part of the work we have to do to 
be able to more effectively engineering System-of-Systems in the future. 
 



 
Challenges Insights Needed Leverage Needs 
Re-composing stakeholder 
groups over time 

Identifying affected parties Multiple mechanisms for 
engaging stakeholders 

Balancing and re-balancing 
competing system priorities 
given changing stakeholder 
needs over time 

Opportunities as well as 
risks posed by emergent 
behavior 

Marketplace mechanisms to 
allow dynamic trade-offs in 
both SoS usage and 
incremental development of 
new/changed capabilities 

Shifting locus of control Costs/benefits (in term of 
SoS performance) of ceding 
control to constituent 
systems versus exerting 
control through interfaces 
or constraints 

How interfaces can be used 
to constraint and control 
constituent systems 

Information control When to change between 
“need to share” and “need 
to know” for different 
elements of information and 
data 

Mechanisms to handle 
changing information 
control and sharing over 
time – for the same and 
different info/data elements 

Diffuse control over 
inclusion of different 
constituent systems in the 
SoS 

When users have achieved 
practical inclusion of new 
system elements in the SoS 
(or changed SoS 
boundaries) 

Mechanisms for enabling 
users of the System-of-
Systems to understand 
which capabilities have 
which levels of maturity, 
credibility and V&V 

 
 
One of the toughest decisions for systems engineers working on System-of-Systems 
refinement is where to focus the biggest amount of effort and energy: 

• on refining the System-of-Systems to eliminate or compensate for the negative 
emergent behaviors discovered 

• on  working with stakeholders to enable them to benefit from the positive 
emergent behaviors discovered, and re-prioritize the changes to be made in the 
next refinement of the System-of-Systems 

This decision is analogous to the logger’s choice between sawing down the next tree, and 
stopping to sharpen his saw.  When we are implementing a plan-then-execute effort in an 
attempt to “get it right the first time” it is fairly clear when we should focus on 
“sharpening the saw”: 

 When development is proceeding well enough that there is “spare time” to 
“sharpen the saw” or 

 When development falls far enough behind schedule that it becomes painfully 
apparent that the saw must be sharpened to make adequate future progress. 

 
But when we are implementing a refinement-towards-desired-capabilities approach, it 
will be much more difficult for all of the stakeholders to tell when it is time to work with 



stakeholders to help them benefit from positive emergent behaviors and re-prioritize for 
the next refinement (“sharpen the saw”).  In the world of Agile Software development, 
this decision is solved by choosing a standard interval (the duration of an agile scrum, 
typically a timeframe such 4 or 6 weeks), and holding each period of refinement to that 
interval.  The first few days of each interval are used to re-prioritize, and the remainder of 
the interval is used to design and implement as many of the top priority refinements as 
possible. 
 
It is not clear that such an approach is feasible for refinement of a System-of-Systems, 
since there are so many more stakeholders, and they are typically diverse enough that 
getting them to speak with one voice cannot be accomplished within a few days.  So we, 
as a profession, will need to invent the systems engineering System-of-Systems 
equivalent to the Agile Software process if we want to use this refinement-towards-
desired-capabilities approach. 
  
If we use a combination of SysML modeling and agent-based modeling to improve out 
insight into the System-of-Systems, we can probably use these models to capture the 
characteristics of emergent behavior as it is discovered.  We may also be able to use these 
models to show various stakeholders the results of different possible trade-offs in 
System-of-Systems development.  Only trial and error are likely to show whether use of 
these models will also enable us to reach consensus among stakeholders about when it is 
time to press ahead and refine the System-of-Systems to deal with emergent behaviors, 
and when it is time to focus on improving stakeholder use of current system capabilities 
and re-prioritization of the next refinements needed. 
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