
Can We Engineer the Emergent Behavior of A System-of-Systems?

Moderator: J. C Hsu,The Royal Academy of Engineering, Queens University

Panelists: E. Axelband, RAND Corporation

A. M. Madni, Intelligent Systems Technology, Inc.
C. Dagli, Missouri University of Science and Technology
D. McKinney, Lockheed Martin Space Systems Company

Abstract:

Emergent behaviors exist in biological systems, physical systems and human performance. It is
an inherited nature of a System-of-Systems (SoS). SoS displays a global complexity that cannot
be adequately managed by hierarchical structures and central control; therefore, traditional
systems engineering and management approaches are necessary but insufficient for a SoS.

Little is currently known about constructing an interoperable network of systems and the
incorporation of emergent behaviors. The purpose of this panel is to explore the possibilities of
developing an architecture model including the emergent behavior.

The challenge is how to understand the initiation mechanisms of the emergent behaviors for a
particular system architecture model so that the resident beneficial or harmful emergent
behaviors can be enhanced or mitigated with selected changes in the model. Is model-based the
only feasible approach to develop the architecture model with emergent behavior? If this is the
answer, what kind of modeling methodology? Should it be solely based on agent-based
modeling or a combination of SysML and agent-based? Is SysML ready to deal with emergent
behavior?

For a non-modeling consideration, can we plan for the beneficial or harmful emergent properties?
How do we overcome development friction that is bound to arise when there are complex,
independent, overlapping governances, for example, the customer requirements for a SoS evolve
over time, etc.? There may only be SoS modeling at the level of the government agency, which
actually procures but does not build, and not at the level of contractors who build the next
generation of technologies.

Biographies:

Moderator:

John C Hsu

Dr. Hsu is a pioneer in developing and establishing systems engineering process for the Boeing
Company. He has worked as technical and project managers, Systems Engineering Integration
Lead and Senior Staff at The Boeing Company. With more than thirty (30) years of diversified
experience in Systems Engineering, Aerospace Engineering, Mechanical Engineering, Nuclear
Engineering, software development and engineering management has made John a significant
contributor to the aerospace and nuclear industries.

John is also active in academia. He is an Adjunct Professor teaching graduate/senior level
systems engineering at California State University Long Beach and systems engineering
certificate program at The University of California Irvine, and a Royal Academy of Engineering
Visiting Professor in Systems Engineering in UK.

John is also active in professional societies. He is the Chair of INCOSE Net-Centric Operations
(NCO) Working Group, past Region II Representative and President of Los Angeles Chapter. He
is the Editor of Systems Engineering Journal and immediate past Chair of AIAA (American
Institute of Aeronautics and Astronautics) Systems Engineering Technical Committee and an
Associate Fellow.

Dr. Hsu earned his Ph.D. in Mechanical and Aerospace Engineering, M.S. in Nuclear Engineering
and M.S. in Mechanical Engineering. He is a registered Professional Engineer.

Panelists:

Elliot Axelband

Dr. Elliot Axelband is an INCOSE Fellow. He is currently a Senior Engineer at RAND
Corporation. He is an Associate Dean Emeritus and Consultant of USC School of Engineering.
He is also Head of Fellows Search Committee, IEEE Aerospace and Electronic Systems Society,
Associate Editor, INCOSE Journal, Member of Systems Engineering Steering Committee, NDIA,
etc. His past responsibilities included Member, DoD Scientific Advisory Board, Head, Fellows
Committee of US Air Force Center for Systems Engineering Advisory Committee, System
Engineering Advisory Board, Systems and Software Productivity Consortium, Member, DoD JSF
Independent Review Team (Contracted through IDA), Director, Moller International, Research
Professor, USC, Dept. of Electrical Engineering-Systems, Director, USC Graduate Program in
System Architecture and Engineering, Associate Dean for Research Development, USC School
of Engineering, 35 years with Hughes Electronics (Hughes Aircraft Co.), including: - Vice
President, Systems Sector, Vice President, Electro Optical and Data Systems Group and General
Manager, Tactical Electro-Optical Systems Division, US Air Force, Scientific Advisory Board,
Hughes Senior Executive to USC School of Engineering Board of Counselors. He earned his
Ph.D. and MSEE from UCLA and has 50 Professional Publications. Numerous other
achievements cannot mention here due to time limitation.

Experience:
• Senior Engineer, RAND Corporation, since ‘94
• Associate Dean Emeritus, Consultant, USC School of
 Engineering, since ‘03
• Head, Fellows Search Committee, IEEE Aerospace and Electronic Systems Society,
since ‘94
• Manager/Part Owner, Legacy Engineering LLC, since ‘98
• Member, DoD JSF Independent Review Team-2 (Contracted through IDA), since ’04-‘06
• Member, US Air Force Center for Systems Engineering Advisory Committee, ‘01-‘05
• System Engineering Advisory Board, Systems and Software Productivity Consortium,
’05-‘06
• Member, DoD JSF Independent Review Team (Contracted through IDA), 3/04 – 5/05
• Director, Moller International, LLC, 2002-2003
• Director, BuySmart LLC, Delaware, Md., 1999 - 2003
• Director, Kollsman Inc., Manchester NH, 1996 - 2001
• Director, USC Graduate Program in System Architecture and Engineering, 1/’94- 6/’03
• Associate Dean for Research Development, USC School of
 Engineering, 1/’94 – 6/’01
• 35 years with Hughes Electronics (Hughes Aircraft Co.), including:
- Vice President, Systems Sector ($1B in sales, 8000 employees), '93 - '90
- Vice President, Electro Optical and Data Systems Group and General Manager, Tactical
Electro-Optical Systems Division
($ 350M in sales, 350 direct and 2000 indirect employees),
‘90 –‘ 86

- Electro-Optical and Data Systems Group, Missile Systems Group, Avionics Systems
Group, Space Systems Division, Weapons Systems Group, ‘86 - ’58.

Azad M. Madni

Dr. Azad Madni is elected Fellows of INCOSE, IEEE, SDPS and IETE. He is the founder and
CEO of Intelligent Systems Technology, Inc. His research interests are enterprise/systems
architecting, system-of-system engineering, modeling and simulation, human performance
enhancement, and cognitive systems engineering. He is the recipient of the SBA’s National
Tibbetts Award for excellence in research, technology innovation, and transition. In 2000 he
received the Blue Chip Enterprise Award for entrepreneurship from Mass Mutual and U.S.
Chamber of Commerce. He is a two-time winner of the Developer of the Year Award from the
Software Council of Southern California. He is currently serving as the President of the Society of
Design and Process Science. He is the Editor-in-Chief of the Journal of Integrated Design and
Process Science, a journal devoted to covering transdisciplinary research and education
worldwide. Dr. Madni has been a Visiting Industrial Fellow of Caltech’s Jet Propulsion Laboratory
in the Space Microelectronics Center. He is listed in the Marquis’ Who’s Who in Science and
Engineering, Who’s Who in Industry and Finance, and Who’s Who in America. He received his
Ph.D., M.S., and B.S. in Engineering from UCLA.

Experience: Dr. Madni is the CEO and Chief Scientist of Intelligent Systems Technology, Inc., a
high technology R&D company specializing in developing solutions and tools for
enterprise/systems architecting, system modeling and simulation, and system-of-systems
engineering, etc. He has been a Principal Investigator on more than sixty-five R&D projects
sponsored by approximately thirty different Federal R&D organizations including DARPA, AFRL,
U.S. Army’s, DoE, and NASA, etc. His company is an affiliate of the USC Center for Systems
and Software Engineering. He is currently serving as the President of the Society of Design and
Process Science and is the Editor-in-Chief of the Journal of Integrated Design and Process
Science, a journal devoted to covering transdisciplinary research and education worldwide. Prior
to founding ISTI, he was with Perceptronics, Inc. for seventeen years where he served in various
senior level executive and scientific positions, culminating in Executive Vice President for R&D
and the Chief Technology Officer of the company. Previous to that, he was a senior systems
engineer and simulation manager at Rockwell International on NASA’s Space Shuttle program,
and a systems engineer at The Ralph M. Parsons Company on Anti-Ballistic Missile Defense
programs.

Cihan Dagli

Dr. Cihan H Dagli is an INCOSE Fellow. He is a Professor of Systems Engineering, Computer
Engineering and Engineering Management at the Missouri University of Science and Technology.

He received BS and MS degrees in Industrial Engineering from the Middle East Technical
University and a Ph.D. in Applied Operations Research in Large Scale Systems Design and
Operation from the University of Birmingham, United Kingdom, where from 1976 to 1979 he was
a British Council Fellow. His research interests are in the areas of Systems Architecting and
Engineering, System of Systems, Smart Engineering System Design, Computational Intelligence:
Neural Networks-Fuzzy Logic-Evolutionary Programming.

He has published more than 300 papers in refereed journals and proceedings, 19 edited books
and was a Principal or Co-Principal Investigator of research grants of approximately $ 3 million.

Experience: Dr. Cihan H Dagli is a Professor of Systems Engineering, Computer Engineering
and Engineering Management at the Missouri University of Science and Technology. He is the
founder and the director of the Missouri S&T’s System Engineering graduate program. He is the
Area editor for Intelligent Systems of the International Journal of General Systems, published by
Taylor and Francis, and Informa Inc. He contributes to INCOSE NCO Net-Centric Operations

Working group. He has consulted with various companies and international organizations
including The Boeing Company, AT&T, John Deere, Motorola, U.S. Army, UNIDO, and OECD.
He contributes to INCOSE NCO Net-Centric Operations Working group.

Dorothy McKinney

Ms. Dorothy McKinney is an INCOSE Fellow. She works for Lockheed Martin Space Systems
Company as a Senior Fellow. Dorothy helps the company to apply best practices and lessons
learned from across Lockheed Martin and industry to meet immediate program needs and reduce
risks, with special emphasis on software systems engineering challenges.

 A graduate of Prescott College with a B.A. and majors in Systems Sciences and English,
Dorothy also has a M.S. in Computer Engineering from Stanford University, and an M.B.A. from
Pepperdine University.

Professional society participation includes: INCOSE Fellow, AIAA Associate Fellow and IEEE
member. Dorothy has been active in INCOSE since 1992, including delivering tutorials to
INCOSE chapters, and serving as Technical Chair of INCOSE 2002 and 2007 Symposia. She is
past president of the San Francisco Bay Area chapter, serves on the chapter Board of Directors
and also has served on the INCOSE Board.

Experience: Ms. Dorothy McKinney works for Lockheed Martin Space Systems Company as
a Senior Fellow. Dorothy helps the company to apply best practices and lessons learned from
across Lockheed Martin and industry to meet immediate program needs and reduce risks, with
special emphasis on software systems engineering challenges. Dorothy joined a Lockheed
Martin heritage company in 1979 as a lead systems engineer. She has held a series of software,
systems and engineering management positions in various parts of the corporation, and has been
active in multiple program rescues. From 1985 to 1994, Dorothy was also an Adjunct Professor
at San Jose State University, teaching graduate courses such as Engineering Management and
Software Project Management. Starting in 2002, Dorothy has been teaching a course on
Requirements Engineering over the internet for Portland State University. Other industry
experience included three years at ARGOSystems (a Boeing subsidiary), and nine years at SRI
International (formerly called Stanford Research Institute).

Elliot Axelband- COPING WITH EMERGENCE
Contribution to a proposed INCOSE 2009 panel organized by John C Hsu

Complex adaptive systems and emergence existed long before their terms of art were
coined and their consequences appreciated. However, the greater prevalence today of
social networks and net centricity and their impact upon the creation and operation of
complex adaptive systems accelerates our interest and the need for improving our
understanding of emergence, and both utilizing its positive possibilities and suppressing
or confining its negative effects.

We can nonetheless learn from the past, and anticipate issues that the future will bring.
Both are addressed in terms of confining negative effects: the past in terms of lessons
learned, and the future in terms of the new forces attacking information assurance that
accompany net centricity that have the power to disrupt complex adaptive systems by
inducing negative emergence. These are listed below along with the lessons and
challenges they provide. In all cases, modeling and simulation play a strong role in
defining and coping with emergence, and in several cases the immaturity of modeling and
simulation to address underlying phenomena contribute to the resulting emergence.

1 - Landing on the Moon; creating a system to suppress inherently difficult-to-predict
emergent phenomena

2 - Guided missile flight stability; coping with after the fact-experienced emergence

3 - Electro-Optical Image Generation; coping with after the fact-experienced emergence

4 - JSF Weight Explosion; coping with the absence of accurate models and the
consequent after the fact-experienced emergence

5 - VH-71 Requirements Miasma; avoiding self-induced emergence

6 - MANET Networks and FCS; coping with emergence in the absence of theory

7 - Information Assured Networks, the need for robustness and multiple lines of defense,
and the resultant uncertainty regarding emergen

The lessons vary from example to example, but these examples are real, and I believe the
lessons are enduring.

The first example is a classic case where the environment was unknowable. There was, at
the time a soft landing on the moon was contemplated, in 1960, insufficient knowledge of
the properties of the moon's surface to use to design the lunar descent profile, the landing
gear, and the spacecraft it supported. There was a program planned to improve that
knowledge by taking images from a hard landing spacecraft and transmitting them back
to the earth before it crashed on the moon, but that program failed in its early launches
and did not produce any timely data. All then that could be relied upon to estimate the

hardness/sponginess and contours of the lunar surface were radar returns, optical images,
and geological suppositions, and all experts agreed that these were inadequate for
providing accurate lunar surface estimates. However the program succeeded by
undertaking a campaign of experimentation that included extensive modeling and
simulation, and used these data to design and implement a robust solution.

Examples 2 and 3 represent cases where in hind sight simulation and modeling could
have been employed to predict a serious system problem, but were not with the result that
the problems were discovered in flight test with pre-production proto-types, and were
very expensive to fix as was, of itself, the time spent creating and demonstrating the fix.
As a result, simulation and modeling were, at that point, no longer the proper avenues of
correction and it was much more expeditious to build alternative fixes and flight test them
to find one that was satisfactory.

Example 4 is an illustration of a hard to accept but real situation: there are fields for
which accurate models do not exist. Accurate weight prediction for aircraft whose
features depart significantly from prior versions is far from guaranteed. In this case, two
independent and expert groups made state of the art predictions that were in general
agreement, but both were significantly in error. The result was a very serious disruption
of a complicated and expensive program as an overweight unacceptable condition
emerged. This argues for the early identification of areas for which accurate predictive
techniques do not exist, and building early prototypes that allow emergence to be
experienced at a time when its consequences can be more easily accommodated.

Example 5 makes the case that you are asking for emergence if you enter system
development before you stabilize the requirements, i.e., before you understand what you
need to build. This is an old story that has been understood in many fields for many
years. What is more intriguing is how, knowing this, the very competent participants
could have allowed it to happen. The new story to be explained in the paper is that of the
social and political underpinning that caused these veterans to do something that was so
basically flawed in retrospect.

Example 6 illustrates that beyond lacking accurate models as in example 4, there are field
for which there are no models that predict performance and therefore experimentation is
the only way to contain emergence.

And example 7 is similar except that it is not a lack of models, but an inability to predict
external forces that, in this case, disrupt networks whose operation is necessary for
enterprises to succeed. Emergence is contained in the case be continual expert
maintenance that is vigilant at detecting emergent properties, and constructing real time
corrective compensation.

A consideration of these 7 examples provides insight into the causes and containment of
harmful emergence.

Azad M. Madni – TOWARD ARCHITECTING SYSTEM-OF-SYSTEMS:
CHALLENGES AND CRITICAL SUCCESS FACTORS
Contribution to a proposed INCOSE 2009 panel organized by John C Hsu

The architecting, design, and management of System-of-Systems (SoS) is complicated

by the fact that a SoS exhibits certain unique properties such as changing boundaries,

lack of central control, and emergence. Exacerbating the problem is the fact that there is

no standard definition of a SoS. Therefore, at the outset, I offer the following definition of

a SoS to begin a dialogue:

“A SoS is a complex ensemble of independent systems developed and introduced over

different time frames by multiple independent authorities to provide multiple,

interdependent capabilities in support of multiple missions. The capability of a SoS

typically exceeds the sum of the capabilities of the member systems.”

With this definition, we can begin to distinguish between a traditional system and a SoS.

Table 1. Traditional System Versus SoS [Madni, 2006; Madni, 2007a]

From the foregoing definition and comparison of SoS with a traditional system, certain

SoS architecting challenges become apparent: (a) overcoming development friction that

is bound to arise when there are complex, overlapping governances; (b) getting

stakeholders to develop shared interests when, in fact, they are associated with multiple,

independent concurrent development with overlapping governances; (c) maintaining

coherence at the SoS level when independently planned programs continue to pull in

different directions; (d) achieving robustness despite inability to perform critical tradeoffs

(remember, complexity renders certain tradeoffs incalculable); and (e) maintaining

interoperability in the face of dynamically changing, uncertain information requirements

[Salasin and Madni, 2007].

An example of a SoS that exhibits these characteristics is the National Air Transportation

System (NATS). The NATS is a geographically-distributed, networked enterprise. In

such an enterprise, the different parts of the enterprise tend to optimize their respective

objectives which can often be in conflict with each other. The challenge is determining

how to maintain global coherence while responding to changes and opportunities at both

the global and local levels of the enterprise. In the case of NATS, its architecture is

driven by the goals of international commerce. It comprises multiple systems such as

the Air Traffic Control System (ATCS), the Airlines, Airport Operations, and, of course,

the Consumer Complex. Each system is concerned with maximizing its own objectives.

For example: the ATCS is concerned with flight safety and maximizing the use of

airspace; the airlines are concerned with maximizing their bottom line; the airport

operations are concerned with conserving costs while providing acceptable service; and,

the consumers are interested in getting best value (i.e., a combination of cost,

timeliness, and experience) from the rest of the enterprise. Since changes can occur in

any of these systems and cross-cutting functions, NATS needs to be able to respond to

such changes by marshalling the required resources in the physical world and on the net

and bringing them to bear at the point of need.

Today, there is little guidance on how to architect a SoS. This is not surprising because

architecting a SoS is complicated by several factors. First, SoSs are dynamic entities in

that systems are added, modified, or removed as mission requirements change. While it

may be possible to address a subset of these changes a priori, several changes need to

be handled on the fly. Second, the technological infrastructure needs to change with

technological advances and changes in Quality of Service (QoS) requirements. These

considerations imply that a SoS architecture needs to not only enable the evolution of

the SoS, but also be evolvable itself! Third, we need to be able to assess the potential

impact of not completely knowing a priori the architecture of a SoS on the quality

attributes and performance of the SoS [Madni, 2008; Madni, 2007b]. In fact, is it even

possible to evaluate the quality attributes under such conditions?

Fortunately, it is possible to identify a few critical success factors to get rolling. First, we

need to do as much up-front engineering as possible (evolvability is costly and difficult to

infuse later). Second, we need to avoid “SoS architecting myopia” by mapping mission

capability requirements on to SoS architectural nodes to assess coverage and to identify

and fill gaps. Third, we need to focus on the most challenging and the most likely

operational scenarios in defining architectural requirements. Fourth, we need to define

semantics and models to share best practices. Fifth, we need to employ an iterative

process in SoS architecting to continually increase our understanding and reduce risks.

Sixth, we need to experiment with “guided” emergence [Madni, 2006] by creating

conditions and policies (e.g., incentives/disincentives) that help produce the desired SoS

capabilities and behaviors.

An example of “guided emergence” is that of city planning. A city evolves through the

collective action of multiple individuals/agents acting locally over time. A city emerges

and changes over time through loosely coordinated and regulated action of multiple

individuals/agents. An evolving city exhibits coherence without central control through

mechanisms that regulate local action [SEI Report, 2006]. Mechanisms include city

regulations, communications, distribution and emergency services. These serve as

incentives and disincentives. A city is built gradually in parts by people, companies and

communities to serve their own purpose. A city grows and thrives based on cultural and

economic necessities. A city is always in a state of perpetual change (construction,

repairs, demolitions, operations). If one were to substitute the term “SoS” for “city,” one

can find immediate parallels and develop insights into how an SoS can be architected,

designed and managed.

In closing, these thoughts are meant to stimulate a dialogue in the systems engineering

community. This is only the beginning of our shared journey in understanding emergent

properties of a SoS.

References:

1. Madni, A.M., and Moini, A. “Viewing Enterprises as Systems-of-Systems (SoS):

Implications for SoS Research,” Journal of Integrated Design and Process Science,

Vol. 11, No. 2, June 2007a, pp. 3-13.

2. Salasin, J. and Madni, A.M. “Metrics for Service Oriented Architecture (SOA)

Systems: What Developers Should Know,” Journal of Integrated Design and Process

Science, Vol. 11, No. 2, pp. 55-71, 2007.

3. Madni, A.M. Architecture Tradeoff Analysis: A Disciplined Approach to Balancing

Quality Requirements, Ground System Architectures Workshop (GSAW),

Architecture-Centric Evolution (ACE) of Software-Intensive Systems Presentation,

March 27, 2007b.

4. Madni, A.M., “Architecture Follies: Common Misconceptions and Erroneous

Assumptions,” Fellows’ Insight, INCOSE INSIGHT, Vol. 11, No. 1, pp. 33-34,

January 2008.

5. Madni, A.M. System-of-Systems Architecting: Critical Success Factors, USC-CSSE

Convocation, Executive Workshop, 2006.

6. Madni, A.M. “Agile Systems Architecting: Placing Agility Where it Counts,”

Conference on Systems Engineering Research (CSER), 2008.

7. SEI’s Report on Ultra Large-scale Systems, 2006.

Cihan Dagli – SYSTEMS-OF-SYSTEMS ARCHITECTING
Contribution to a proposed INCOSE 2009 panel organized by John C Hsu

Architecting is the process of structuring the components of a system, their interrelationships and their
evolution over time. It is related to the structure properties of a system. Successful architecture
development is important as it plays a dominating role in integration of component systems. However,
classical system architecting is changing as we are increasingly becoming a networked society. This is
true in industry, individuals, and all forms of government. Society is growing increasingly dependent on
these networks. It is possible to combine these systems and make them trans-national; it thus provides an
opportunity to respond to the dynamically changing needs imposed by global events. Consequently, this
creates a need for systems architectures that will be in effect for the duration of the event, possibly
necessitating the need to develop new systems architecture for the next mission or event. This fact is
important, as it complicates the systems architecting activities. Hence, architecture becomes a dominating
but confusing concept in capability development. These systems are generally referred as System of
Systems (SoS), which is a collaborative meta-level system structure where independent complex systems
are integrated to provide increased functionality and performance capabilities.

The loss of any part of the system will degrade the performance or the capabilities of the whole. They
need to evolve in time to accommodate changes in requirements and technology. Hence, systems
engineers need to monitor and evolve adapt systems architectures in a timely manner. This eliminates the
classical concept that is used in the past, namely, that architectures are static.

These systems evolve by adding components, and as in the case of electrical utilities, creating a
potential for hidden robustness, e.g. load sharing across electric utilities, and also giving rise to a potential
for cascading failures as well; as characterized by the August 14, 2003 blackout in Northeast U.S.
Individual systems within the SoS may be developed to satisfy the peculiar needs of a given group, the
information they share being so important that the loss of a single system may deprive other systems of
the data needed to achieve even minimal capabilities.

Unfortunately, the current body of knowledge in systems research is not sufficient for effective design
and operation of these types of systems. There is a need to push the boundaries of technology and systems
engineering and systems architecting research both in industry and research universities to meet the
challenges imposed by new demands. There is an increased uncertainty about system requirements
coupled with continuous changes in technology and organization structures. Diverse spectrums of
missions and operations require the development of system architectures that can adapt and evolve. .

Different complex system of systems can be identified by analyzing the system attributes such as
interdependent, independent, distributed, cooperative, competitive, and adaptive. Recent system
definitions can be based on these attributes. For example, it is possible to define a Family of Systems
(FoS) as a set or arrangements of independent systems that can be arranged or interconnected in various
ways to provide capabilities. The mix of systems can be tailored to provide desired capabilities,
dependent on the situation. Although these systems can be providing useful capabilities independently, in
collaboration they can more fully satisfy a more complex and challenging capability. We can also define
intelligent enterprise systems in terms of cooperative, competitive and adaptive systems that evolve to
respond to changing business conditions. System of systems can be defined in terms of interdependence
attribute where a set or arrangements of interdependent systems are connected to provide a given
capability. While individual systems within the SoS may be developed to satisfy the peculiar needs of a
given user group, the information they share is so important that the loss of a single system may deprive
other systems of the data need to achieve even minimal capabilities.

Complexity Theory is a beneficial approach to define and understand the identity of a system. It helps
in understanding how complex systems are affected from their environments and how a system learns by
proposing alternative ways for improvement. It also answers the question that why some good predictions
and solutions can be obstructed by dynamic nature of the environment.

1. Long term planning is impossible: There are non-linear relationships among components of complex
systems. Therefore, long-term planning is impossible. Systems of systems are composed of complex
systems and a meta-system behavior cannot be derived by analyzing the behavior of the component sub-
systems.
2. Dramatic change can occur unexpectedly: Complexity Theory claims that small perturbations can also
cause huge changes on the overall system behavior. Changes are inevitable and impact of changes is not
always obvious. This property is the reason for cascading failures in System of Systems. Since there is
strong interdependency among systems, a small change can cause a chain reaction and result in cascading
failures.
3. Complex systems exhibit patterns and short-term predictability: Long-term forecasting is impossible
but short-term forecasting and describing the behavioral model of systems is possible. Therefore, next
time period behavior of systems can be predicted when reasonable specifications of conditions at one time
period are given. System of System testing and validation is based on this characteristic. Architecture
performance evaluations focus on short term forecasting of system architecture behavior.
4. Organizations can be turned to be more innovative and adaptive: Complexity Theory suggests that
emergent order and self organization provide a robust solution for organic networks to be successful in
competitive and rapidly changing environmental conditions. The evolutionary characteristic of the SoS
architecting results in emergent capabilities that individual systems are not capable of achieving. System
architects can benefit from this property of by designing SoS components that can self adapt and self
organize to changing environmental conditions. In the talk these concepts will be discussed and
importance of systems architecting will be emphasized in creating the complex engineering system of
this century.

Dorothy McKinney: How to Engineer the Emergent Behavior of A
System-of-Systems
Contribution to a proposed INCOSE 2009 panel organized by John C Hsu

Developing, refining and controlling System-of-Systems (SoS) present many challenges.
It is instructive to consider how traditional systems engineering and management
approaches could be extended and augmented to address the complexities of a System-of-
Systems. In considering different approaches, it would be optimal to enable participants
in System-of-Systems development and use to change their perspective from the more
deterministic view we have traditionally had of system development (“We can decide
what the system will do and how it will do it”) to a more opportunistic view (“We need to
ready ourselves to ‘catch the wave’ and ‘surf the ocean of possibilities’ to surmount, or
even harness, the ‘waves’ of emergent behavior we encounter in our attempt to use the
System of Systems for our intended purposes”). In other words, we have the dual
challenges of:

• adding new approaches and techniques to deal with the complexities of System
of System development and

• changing the culture of our organizations to be able to handle the human and
organizational complexity and changes required to make effective use of System-
of-Systems potential.

The table below identifies some of the non-traditional challenges we face in engineering
a System-of-Systems, and dealing with the new demands imposed by emergent behavior.
To address these challenges, we can try to control events long enough to get a System-of-
Systems working to meet formal functional requirements and quality of service targets.
This is the “get it right the first time” approach. Or we can try to get a System-of-
Systems functioning, and then refine its behavior to move closer to desired functional
capabilities and quality of service. This is the “get it working first, then try to evolve it in
desired directions” approach.

The latter approach may be more practical when resources are very limited and/or
requirements are changing more quickly than System-of-Systems capabilities can be
completed and delivered. If we take this latter refinement approach, we need
significantly different mechanisms for accounting to stakeholders than the conventional
plan-versus-actual progress reporting. Opportunistic refinement of System-of-Systems
capabilities probably requires much more of a continuing “sale to stakeholders” than does
a conventional plan-and-perform-to-plan approach. This kind of “salesmanship” has not
historically been a key requirement for effective systems engineering, and may pose real
personal growth challenges for many individuals in our profession. The table below does
not attempt to address how the needed new mechanisms could be “sold” to stakeholder
communities as credible and reliable, but that is clearly part of the work we have to do to
be able to more effectively engineering System-of-Systems in the future.

Challenges Insights Needed Leverage Needs
Re-composing stakeholder
groups over time

Identifying affected parties Multiple mechanisms for
engaging stakeholders

Balancing and re-balancing
competing system priorities
given changing stakeholder
needs over time

Opportunities as well as
risks posed by emergent
behavior

Marketplace mechanisms to
allow dynamic trade-offs in
both SoS usage and
incremental development of
new/changed capabilities

Shifting locus of control Costs/benefits (in term of
SoS performance) of ceding
control to constituent
systems versus exerting
control through interfaces
or constraints

How interfaces can be used
to constraint and control
constituent systems

Information control When to change between
“need to share” and “need
to know” for different
elements of information and
data

Mechanisms to handle
changing information
control and sharing over
time – for the same and
different info/data elements

Diffuse control over
inclusion of different
constituent systems in the
SoS

When users have achieved
practical inclusion of new
system elements in the SoS
(or changed SoS
boundaries)

Mechanisms for enabling
users of the System-of-
Systems to understand
which capabilities have
which levels of maturity,
credibility and V&V

One of the toughest decisions for systems engineers working on System-of-Systems
refinement is where to focus the biggest amount of effort and energy:

• on refining the System-of-Systems to eliminate or compensate for the negative
emergent behaviors discovered

• on working with stakeholders to enable them to benefit from the positive
emergent behaviors discovered, and re-prioritize the changes to be made in the
next refinement of the System-of-Systems

This decision is analogous to the logger’s choice between sawing down the next tree, and
stopping to sharpen his saw. When we are implementing a plan-then-execute effort in an
attempt to “get it right the first time” it is fairly clear when we should focus on
“sharpening the saw”:

 When development is proceeding well enough that there is “spare time” to
“sharpen the saw” or

 When development falls far enough behind schedule that it becomes painfully
apparent that the saw must be sharpened to make adequate future progress.

But when we are implementing a refinement-towards-desired-capabilities approach, it
will be much more difficult for all of the stakeholders to tell when it is time to work with

stakeholders to help them benefit from positive emergent behaviors and re-prioritize for
the next refinement (“sharpen the saw”). In the world of Agile Software development,
this decision is solved by choosing a standard interval (the duration of an agile scrum,
typically a timeframe such 4 or 6 weeks), and holding each period of refinement to that
interval. The first few days of each interval are used to re-prioritize, and the remainder of
the interval is used to design and implement as many of the top priority refinements as
possible.

It is not clear that such an approach is feasible for refinement of a System-of-Systems,
since there are so many more stakeholders, and they are typically diverse enough that
getting them to speak with one voice cannot be accomplished within a few days. So we,
as a profession, will need to invent the systems engineering System-of-Systems
equivalent to the Agile Software process if we want to use this refinement-towards-
desired-capabilities approach.

If we use a combination of SysML modeling and agent-based modeling to improve out
insight into the System-of-Systems, we can probably use these models to capture the
characteristics of emergent behavior as it is discovered. We may also be able to use these
models to show various stakeholders the results of different possible trade-offs in
System-of-Systems development. Only trial and error are likely to show whether use of
these models will also enable us to reach consensus among stakeholders about when it is
time to press ahead and refine the System-of-Systems to deal with emergent behaviors,
and when it is time to focus on improving stakeholder use of current system capabilities
and re-prioritization of the next refinements needed.

	Panel124_Bios&Description
	3 Panel124_DAGLI IS 2009 System of Systems Architecting
	4 Panel124_DorothyMcKinney Position Paper

	Prev:
	Next:
	Close:
	First:

