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Abstract.  The Department of Defense (DoD) has placed a growing emphasis in recent years on 
the pursuit of agile capabilities via net-centric operations. In this setting, systems are increasingly 
required to interoperate along several dimensions. Yet, the manner in which components of these 
“system-of-systems” are acquired (designed, developed, tested and fielded) has not kept pace with 
the shifts in operational doctrine. Acquisition programs have struggled with complexities in both 
program management and engineering design. This paper presents a classification of underlying 
complexities in the acquisition of system-of-systems and describes a conceptual model that 
exposes the connectivity between systems, requirements, and externalities throughout the 
acquisition lifecycle. Implementing this model in an exploratory computer simulation highlights 
the relationship between requirement dependencies, risk profiles of the project and management 
parameters like span-of-control of SoS engineers and managers. The objective of the simulation 
(which remains under development) is to allow acquisition professionals to develop intuition for 
procuring and deploying system-of-systems, providing a venue for experimentation to develop 
insights that will underpin successful acquisition of SoS-oriented defense capabilities.  

Introduction 
A system-of-systems (SoS) consists of multiple, heterogeneous, distributed systems that can 

(and do) operate independently but can also assemble in networks and collaborate to achieve a 
goal. According to Maier (1998), the SoS typically demonstrate traits of operational and 
managerial independence, emergent behavior, evolutionary development and geographic 
distribution. Networks of component systems often form among a hierarchy of levels and evolve 
over time as systems are added to or removed from the SoS. However, these component systems 
are often developed outside of the context of their interactions with the future SoS. As a result, the 
systems may be unable to fully interact with the future SoS, adapt to any emergent behavior or be 
robust in the face of external disturbances.  

The Future Combat System (FCS) program exemplifies a Department of Defense (DoD) 
acquisition process for an SoS. FCS seeks to modernize the US Army and provide soldiers with 
leading-edge technologies and capabilities allowing them to dominate in asymmetric ground 
warfare and to sustain themselves in remote places (U.S. Army). FCS has faced technical and 
management challenges that have come to typify acquisitions in SoS environments. 

In 2003, the FCS program was comprised of an information network and 18 primary systems 
(categorized as manned ground systems, unmanned ground systems, and unmanned air vehicles). 
The Army’s initial schedule allotted a 56-month system development and demonstration (SDD) 
phase [2003-2008] with the goal of achieving full operational capability by 2013. The Army’s 
initial cost estimate was $108 billion (U.S. GAO 2003). Over the past four years, the FCS has been 
restructured twice in an effort to reduce the high risk attributed to the presence of immature 
technologies in critical paths and the challenges of concurrently developing these technologies 
with product development. The Government Accountability Office (GAO) criticized the Army’s 



  

acquisition strategy and concluded that the total cost for the FCS program had increased by 76 
percent ($160.7 billion) from the Army’s first estimate of $108 billion. However, independent 
estimates predicted an increase to $234 billion (116%).  

In addition to the technical challenges, the FCS program also faced managerial challenges 
stemming from the Army’s partnership with an industry Lead System Integrator (LSI). The role of 
the LSI is to reach across Army organizations to manage development of the SoS (U.S.GAO June 
2007). Given the high risk involved in implementing a complex SoS, the GAO specifically 
underlined the importance of oversight challenges faced by the LSI in this area (U.S.GAO March 
2007). The challenges of the FCS Program have pushed the Army to decrease the scope of the 
program to 14 systems and extend the time estimate for achieving full capability to 2030 instead of 
2013.  

Other non-DoD organizations are also struggling with systems integration of a collection of 
complex system. The US Coast Guard’s (USCG) Integrated Deepwater System (IDS) is an 
example of a Department of Homeland Security (DHS) acquisition process for an SoS, that has 
also faced challenges stemming from the lack of collaboration between contractors and the 
marginal influence wielded by system integrators to compel decisions between them (U.S.GAO 
2006). The NextGen Air Transportation System and the NASA Constellation program are also 
facing similar challenges in attempting to apply generic system engineering processes for 
acquisition in an SoS environment. Integration challenges faced by the Constellation Program are 
documented in a recent NRC report (Committee on System Integration for Project Constellation 
2004). These examples possess the key drivers motivating the research described in this paper. 

The overarching goal of our research is to understand the types of complexities present in 
acquisition management for SoS, and then to develop approaches that can increase the success of 
an acquisition process in the SoS setting. The three research questions derived from this goal are: 

1. Is there a taxonomy by which one can detect classes of complexities in particular SoS 
applications? 

2. What are the underlying systems engineering (SE) and program management functions that 
are affected? 

3. How can exploratory modeling generate SE and acquisition management modifications to 
improve the probability of success?  

 
In order to answer some of the questions posed, we aim to: 

1. Identify the complexities in the acquisition of SoS based on historical trends of ‘failures’ 
especially in the context of the DoD  

2. Develop a conceptual model of a generic acquisition process that is customizable to different 
SoS applications. 

3. Develop a computational model based on the conceptual model and, through simulation, 
provide insight on and answer questions about process modifications.  

Complexities 
Simon (1996) and Bar-Yam (2003) define complexity as the amount of information necessary 

to describe a system effectively. In the context of a system-of-systems, the necessary information 
encompasses both the systems that comprise the SoS and their time-varying interactions with each 
other and the ‘externalities.’ Rouse (2007) summarized that the complexity of a system (or model 
of a system) is related to:  the intentions with which one addresses the systems, the characteristics 
of the representation that appropriately accounts for the system’s boundaries, architecture, 



 

  

interconnections and information flows, the multiple representations of a system, all of which are 
simplifications; hence, complexity is inevitably underestimated, the context, multiple 
stakeholders, and objectives associated with the system’s development, deployment and operation 
[Polzer et al.(2007) explored the issue of multiplicity of perspectives, where perspective is a 
system’s version of operational context], the learning/ adaptation exhibited during the system’s 
evolution. 

Historical data from previous unsuccessful defense acquisition programs show a distinct 
correlation with the causes for complexity identified by Fowler (1994) points out some of the 
causes for the failure of the Defense Acquisition Process to be “over specification and an overly 
rigid approach on development,” unreasonably detailed cost estimates of development and 
production, impractical schedules and extremely large bureaucratic overhead. Dr Pedro Rustan, 
director of advanced systems and technology at the National Reconnaissance Office, identified 
four specific shortcomings in the acquisition process for defense space systems: initial weapons 
performance requirements that are too detailed and lacking flexibility, insufficient flexibility in the 
budget process, a propensity to increase performance requirements in the middle of the acquisition 
cycle and demands to field entirely new spacecraft to meet new requirement (Spring 2005).  

Using the above examples, we summarize the common causes of failure (Rouse 2007) within 
SoS acquisition processes as: a) misalignment of objectives among the systems, b) limited span of 
control of the SoS engineer on the component systems of the SoS, c) evolution of the SoS, d) 
inflexibility of the component system designs, e) emergent behavior revealing hidden 
dependencies within systems, f) perceived complexity of systems and g) the challenges in system 
representation.  

 
Figure 1: Complexities mapped to a section of the SoSE Process Model (Sage & 

Biemer 2007) 

To provide context, we mapped these complexities to a System-of-systems Engineering (SoSE) 
Process Model designed specifically for SoS applications by Sage and Biemer (2007) (Fig 1).  This 
mapping represents where complexities (green) might arise and how they may affect the 
acquisition process. Keywords to describe the functionalities of the various components in the 
model are indicated next to the component boxes (purple). For example: SoS operations could 
demonstrate emergent behavior and result in a change in the CONOPs for the SoS. Evolution of 



  

the SoS changes the CONOPS of the SoS, resulting in a subsequent change in the Acquisition 
Strategy. Misalignment of objectives of the component systems in an SoS can arise from both the 
CONOPs as well as the SoS Project Control. System inflexibility, perceived complexities and 
challenges in representing systems occur mostly between or within systems. Accurate 
representation of component systems is complicated by the presence of both hidden and visible 
dependencies between systems, fuzzy boundaries, unknown architectures, etc.  

Development of a Conceptual Model 
Pre-Acquisition Model 

We developed a pre-acquisition model to understand the impact of external stakeholders on the 
acquisition process. The model is based loosely on the Sage and Biemer (2007) SoSE Process 
Model and categorizes the external inputs to the SoS acquisition strategy model into ‘Capabilities 
& Possibilities’ (CAP), ‘Technology Assessment, Development, Investment and Affordability 
Plan’ (ADIA) and the funding received.(Ghose & DeLaurentis 2008) The CAP and the 
Technology ADIA Plan translate into technical requirements for the SoS. Provision of a 
computational model of the pre-acquisition activities is outside the scope of this paper. Instead, we 
focus on realizing a model for the acquisition strategy, described next. 

Acquisition Strategy Model 
Development of a ‘brand new’ SoS has 

been and will remain a rare occurrence. In 
their 2005 study on SoS, the United States Air 
Force (USAF) Scientific Advisory Board 
(Saunders 2005) stated that one of the 
challenges in building an SoS is accounting 
for contributions and constraints of legacy 
systems. These legacy systems may be used 
‘as-is’ or may need re-engineering to fulfill 
needs of the new SoS. New systems are also 
incorporated to develop the capabilities of the 
SoS. Again, the new systems may range from 
off-the-shelf, plug-and-play products to 
custom-built systems dependent of the 
working of a legacy system.  

Figure 2 : Heterogeneity of component 
systems in an SoS 

Sub-categories arise when the two or more categories overlap (Fig 2). For example: Improvements 
can be non-system related such as improvements in business practices for the SoS, or 
system-related such as re-engineering legacy systems or customizing/developing new systems to 
meet the needs of the SoS.  

Implementing and integrating these different kinds of systems is made more complex by the 
evolutionary nature of an SoS. Though many systems may be dependent on others during the 
implementation or integration phases, the process to achieve this is often not centrally controlled. 
This requires that the individual systems’ developers have an incentive to collaborate with each 
other. These issues are merely a sub-set of the challenges faced by an acquisition process in an SoS 
environment.   



 

  

The conceptual model for acquisition strategy proposed in this section is based on the 16 basic 
technical management and technical system-engineering processes outlined in the Defense 
Acquisition Guidebook (U.S. DoD 2003), often referred to as the 5000-series guide. However, an 
SoS environment changes the way these processes are applied. The Systems Engineering Guide 
for System-of-Systems (SoS-SE) (U.S. DoD) addresses these considerations by modifying (in 
some cases revamping) some of the 16 processes in accord with an SoS environment. These new 
processes and their functions are described in Table 1. Our conceptual model for acquisition in an 
SoS environment (illustrated in Fig 3) is centered on these revised processes depicted in a 
hierarchy to show the flow of control between the processes throughout the acquisition life-cycle. 

Table 1: Modified Technical Management and Technical Processes as described in the 
SoS-SE Guide (U.S. DoD 2003) 

Requirements 
Development 

Takes all inputs from relevant stakeholders and translates the inputs into technical 
requirements 

Logical Analysis Is the process of obtaining sets of logical solutions to improve the understanding of the defined 
requirements and the relationships among the requirements (e.g., functional, behavioral, 
temporal) 

Design Solution Process that translates the outputs of the Requirements Development and Logical Analysis 
processes into alternative design solutions and selects a final design solution. 

Decision Analysis Provide the basis for evaluating and selecting alternatives when decisions need to be made. 
Implementation The process that actually yields the lowest level system elements in the system hierarchy. The 

system element is made, bought or reused. 
Integration The process of incorporating the lower-level system elements into a high-level system element 

in the physical architecture. 
Verification Confirms that the system element meets the design-to or build-to specifications. It answers the 

question “Did you build it right?” 
Validation Answers the question of “Did you build the right thing?” 
Transition The process applied to move the end-item system to the user. 
Technical 
Planning 

Ensure that the systems engineering processes are applied properly throughout a system’s life 
cycle. 

Technical 
Assessment 

Activities measure technical progress and the effectiveness of plans and requirements. 

Requirements 
Management 

Provides traceability back to user-defined capabilities 

Risk Management To help ensure program cost, schedule and performance objectives are achieved at every stage 
in the life cycle and to communicate to all stakeholders the process for uncovering, 
determining the scope of, and managing program uncertainties. 

Configuration 
Management 

The application of sound business practices to establish and maintain consistency of a 
product’s attributes with its requirements and product configuration information. 

Data Management Address the handling of information necessary for or associated with product development and 
sustainment. 

Interface 
Management 

Ensures interface definition and compliance among the elements that compose the system, as 
well as with other systems with which the system or systems elements must interoperate.  

 
As indicated in Fig 3, Requirements Development provides the technical requirements of the 

SoS, based on the relevant external inputs. The technical requirements are then sent to Logical 
Analysis to check for relationships amongst the requirements. This also helps check for 
inconsistencies amongst requirements and how that might affect the functioning and behavior of 
the future SoS.  



  

 
Figure 3:  Conceptual model of Acquisition Strategy based on SoSE Process described in 

Table 1 
Design Solution development and Decision Analysis are the next processes. They produce the 

optimal design solution from the set of feasible solutions to meet the given requirements. The 
optimal design solution is based not only on the current set of requirements and solution 
alternatives but also takes into account all previous information and data available through 
requirements, risk, configuration, interface and data management processes.  Since most SoS 
acquisitions are multi-year projects involving many different parties, the overlap between the 
management processes, Design Solution and Decision Analysis processes, allows for greater 
traceability for decisions made. The optimal design solution obtained from this phase is then sent 
to the next stage: Technology Planning and Technology Assessment. In the event that there isn’t an 
optimal or sub-optimal design solution to successfully implement the given requirements, the 
feedback loop to Requirement Development translates into a change in the technical requirements 
for the SoS.  



 

  

Technology Planning and Technology Assessment are essentially scheduling processes that 
oversee the implementation, integration, validation and verification for all the component systems 
in the SoS. Systems in the SoS are often dependent on other systems for either implementation, 
integration or both. These dependencies correspond to time-lags in the acquisition process. For 
example: If system A is a legacy system and system B is being built, the integration of A with B 
will not occur until B has been completely implemented. This generates a time lag, especially if 
another system C is waiting to be implemented based on the integration of A with B. As more 
systems are added to the SoS, it becomes necessary to generate a schedule that can help 
co-ordinate the process. This schedule also needs to be continually updated to reflect unexpected 
delays and identify bottle-necks.  

Due to the heterogeneity of component systems that comprise the SoS and the interactions 
between then, Validation and Verification processes need to not only check for suitable 
implementation of the ‘optimal design solution’ on a system-level but also be on the lookout for 
any misaligned objectives between systems, hidden dependencies amongst the systems and any 
emergent behavior that may affect the functioning and/or behavior of the future SoS. In most 
situations, early detection of an emergent behavior will prevent the re-designing of major system 
components and ensure that the SoS functions satisfactorily. Even though Validation and 
Verification processes oversee Implementation and Integration, they occur after Implementation 
and Integration have begun.  

While Implementation and Integration are the lowest levels of the acquisition model shown, 
much of the feedback from this level translates into developing different design solutions and 
sometimes changing the technical requirements. This level deals with acquiring the systems in the 
SoS and integrating them based on their dependencies with other systems. These processes 
consume the bulk of the financial resources as well as consume the most time. Therefore, it is 
understandable why system engineers are often reluctant to re-design functional systems and want 
to make sure that once the system has been developed, integrated and tested, it doesn’t go back into 
the Implementation phase.  

Developing an Exploratory Computational Model 
Overview 

Our purpose in constructing a computational exploratory model is to help acquisition 
professionals develop intuition for procuring and deploying system-of-systems. Thus, the 
objective is not to provide a model validated and ready for deployment in real acquisition 
programs, but to expose the complexities in SoS acquisition. The specific complexities targeted 
are related to evolutionary development of the SoS and the span-of-control possessed by the SoS 
managers and engineers.  

Several challenges arise in transforming the acquisition model to a computational one for 
purposes of simulation and learning. One challenge lies in converting all the qualitative concepts 
into quantitative measures to support the computational model for SoS acquisition. Disruptions 
occur at various stages in the model and are governed by the risk associated with the project. A 
high risk project, for example, will be more vulnerable to disruptions than a low risk project.  A 
second challenge is building a model that can accommodate the dynamic addition and removal of 
components in the SoS. In addition, these component systems need to reflect the heterogeneity of 
the systems in a real acquisition process. We included parameters such as level of completeness to 
demonstrate the difference between legacy systems, new systems and partially implemented/ 



  

integrated systems.  A third challenge arises from the numerous methodologies that can be applied 
to reflect the integration and implementation processes. In a simplified model, it is much easier to 
begin integration once all the systems have been implemented. However, this method is neither 
cost nor time efficient, especially in multi-year projects involving numerous systems. On the other 
hand, dynamically implementing and integrating systems is time-efficient but often not possible 
when dependent systems are outside the span of control of the systems engineers. 

A model that captures all the complexity of the acquisition process for SoS in a modest span of 
time is impossible. Therefore, our coarse-scale engineering model will specifically target 
challenges related to the evolution of the SoS and the span-of-control of the SoS engineer(s).  

Simple SoS Example 
A simple SoS acquisition strategy with 2 requirements and 5 component systems (Fig 4) is 

presented first to illustrate the model workings. Requirement 1 is to improve rescue operations 
performed by a certain fleet, and Requirement 2 is to improve communication and coordination 
between air and ground units.  The 3 types of component systems fulfilling Requirement 1 are 
helicopter (A), ship (B) and communication system (C). Similarly, the 3 component systems 
fulfilling Requirement 2 are ground units (A*), airborne units (B*) and a communication system 
(C*). Since Requirement 1 needs to use the communication system (C*) built by Requirement 2, 
Requirement 1 is dependent on Requirement 2. The directional dependencies within the 
component systems fulfilling each requirement are shown in Fig 4 using dashed yellow 
(bidirectional) and red (unidirectional) lines. The requirement level dependency matrix and the 
system-level dependency matrices for each requirement are shown in Table 2. 

 
 

 

Table 2: Dependency 
matrices 

Requirement 
Dependency 

Matrix 
⎥
⎦

⎤
⎢
⎣

⎡
00
10  

 
 
Requirement 

System 
Dependency 

Matrix 
1 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

011
100
110

 

2 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

000
100
100

 

 

Model Inputs 
Three levels of inputs are used in the model: project-level, requirement-level and system-level. 

The three user-defined project-level inputs are project-risk, span-of-control of SoS managers and 
engineers and estimated amount of time needed to complete the project. A project can have low, 
medium or high project-risk profile and this profile determines: a) the probability of the project 
being affected by disruptions at Design Solution (Level t3(0), Fig 3) and Implementation & 
Integration (Level t5(0), Fig 3) stage, and b) the probability of a new requirement being added 

Figure 4: SoS Example 



 

  

during the project life-cycle. The span-of-control of an SoS engineer or manager indicates whether 
component systems are directly or indirectly accountable to the SoS manager or engineer. A 
project’s span-of-control is either ‘0’ or ‘1’, where ‘0’ represents low span-of-control. A project 
with low span-of-control implements dependent systems sequentially instead of in parallel.  

The requirement-level inputs to the exploratory computational model are initial number of 
requirements, dependencies between requirements, component systems fulfilling each 
requirement and the dependencies between the component systems. The top-down flow of the 
computational model begins from Requirement Development (Level t0(0), Fig  3) to Design 
Solution (Level t3(0), Fig  3) through Logical Analysis(Level t2(0), Fig  3). This flow of control 
linkage using the inputs from Table 2 is shown in the Fig 5. The dependencies between the 
requirements determine the schedule by which the requirements will be implemented. 

For the simple example problem, as shown in 
Table 2, there are 2 requirements (1, 2) and each has 
a dependency vector associated with it. The vectors 
are concatenated to form the dependency matrix for 
requirements (‘0’ is placed for all diagonal 
elements since a requirement cannot be dependent 
on itself). The vector for Requirement 1 ([0 1]) 
shows that Requirement ‘1’ is dependent on 
Requirement ‘2’ and ‘1’ cannot  be realized until ‘2’ 
is implemented. In real world applications, 
communication upgrade to the North-Atlantic fleet 
may be independent of the weaponry upgrade for 
the same group of systems. In such a case, both the 
requirements on the same group of systems may be 
implemented simultaneously. Each requirement 
affects a subset of the systems present in the SoS, 
and the systems in each subset share a unique 
dependency matrix with other systems in that 
subset. 

All component systems of the SoS have user-defined and calculated system-level parameters 
that expose their heterogeneity and help track their progress through the acquisition process.  Some 
of the parameters used to describe each system in the SoS are described in Table 3. While most of 
the parameters are user-defined, Imp.completeness and Int.completeness, are only initialized by 
the user and ID is assigned by the model.  

Table 3: System-level Parameters used to describe component system of the SoS 

Parameter Description 
ID Unique ID assigned to the system 

Imp.completeness[] An array that tracks the progress of the system in the implementation phase 
Imp.dependencies[] Dependency vector that shows if system implementation is dependent on 

information from any other system
Imp.time Maximum time needed to complete implementation 

Int.completeness[] An array that tracks the progress of the system in the integration phase  
Int.dependencies[] Dependency vector that shows if system integration is dependent on 

information from any other system 

Figure 5 : Flow of control and parallel 
processing of requirements



  

Int.time Maximum time needed to complete integration 
 
Implementation or Integration of a system[A] is either dependent on information from other 

systems satisfying the requirement or independent of any such information. Thus, all the tasks 
necessary to successfully implement or integrate system[A] can be divided into smaller subsets 
depending upon which systems they need information from. At time-step t, the level of 
completeness of system[A] with regard to system[X] (denoted by c

AXt ) is defined as the percent of 
tasks needed to successfully implement/integrate system[A] that are dependent on information 
from system[X] and have been completed. Level of completeness for both integration and 
implementation processes can vary between 0 and 100% ( 0 1c

AXt≤ ≤ ). The level of completeness 
of system A with regard to N individual systems is summed to calculate the total level of 
completeness of system A, as shown in Equation 1. 

c c c c
A AA AB ANT t t t= + + +LL           (1)       

Note that though the tasks are dependent on information from system[A], the level of 
completeness says nothing about the status of system[A]. Note also that the model works in 
discrete time.  

Similar to requirements, each system has a pre-defined dependency vector for implementation 
and integration processes. These vectors are concatenated to form a dependency matrix for the 
systems fulfilling each requirement. The system-level dependency matrices for the example in Fig 
4 are shown in Table 2. As previously mentioned, ID is assigned by the model. When the system is 
added to the SoS, it is assigned an ID to uniquely identify it throughout the life-cycle of the SoS.  

Model Dynamics 
The model starts at the Requirement Development (Level t0(0), Fig 3) stage which initializes 

all processes by supplying requirements to be implemented, project span-of-control and project 
risk. Disruptors here signify a change in requirements or addition of new requirements. When a 
requirement is changed after the acquisition process has begun, it affects all subsequent processes.  

 Using the user-defined inputs from Requirement Development, Logical Analysis (Level t2(0), 
Fig  3) generates a schedule to realize the given requirements. The requirements get implemented 
in series or in parallel (per the dependencies). As shown in Fig 5, every requirement being 
implemented gets fed into its own Design Solution and Decision Analysis (Level t3(0), Fig  3) 
process. The Design Solution and Decision Analysis processes feed into each-other and any 
disruptions would indicate that the design solution provided wasn’t feasible. If the solution fails in 
multiple consecutive time-steps, then the requirement is sent back to Requirement Development 
stage, otherwise the set of component systems and their user-defined parameters are sent to the 
Technology Planning and Technology Assessment (Level t4(0), Fig  3) processes.  

Technology Planning generates a schedule to realize the implementation and integration of 
component systems. The systems are divided into smaller batches based on the priority of systems. 
By default, systems in the critical path of most other systems are assigned a higher priority. These 
smaller batches are reminiscent of the technological ‘spin-outs’ introduced during the FCS 
program. For each batch, a synchronization matrix is generated to keep track of the number of 
systems in the batch, their expected times of completion and their iteration-rate. Iteration rate is 
defined as the average rate at which a system needs to be implemented /integrated.  For example: If 
system A which is 25% completed needs to be fully implemented in 5 time-steps. Using Equation 
2, the iteration rate of system A is calculated to be 0.15. 
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System-level disruptors (determined by the project risk) negatively impact the iteration rate of 
the systems fulfilling a given requirement, thus decreasing the level of completeness of a system 
and increasing the time needed for implementation/integration. Technology Assessment tracks the 
progress of component systems by comparing their current iteration rates to the expected values. A 
reduced iteration-rate (due to disruptors) will stall the development of a system mid-process and 
affect other systems dependent on the stalled system. Technology Assessment recognizes the 
stalled systems and activates enablers to re-adjust their iteration-rate.  

Implementation (Level t5(0), Fig 3) of systems occur in series or parallel depending on the 
system dependencies and the span-of-control of the project. The level of completeness for 
implementation increases by the iteration rate at every time-step until it reaches a completeness 
value of 1. The incremental increase in the level of completeness of two dependent systems in a 
project with high span-of-control(‘1’) occurs simultaneously, as shown in Fig 6a. In a case of low 
span-of-control(‘0’), dependent systems are implemented sequentially, as shown in Fig 6b.  If 

itime  is the time needed to implement system[i], then Equation 3 and 4 are used to calculate the 
total time to implement all systems with a low and high span-of-control respectively. 

      For Low span-of-control:  
1

n

i
i

T time
=

= ∑                (3) 

 For High span-of-control: max{ } 1iT time i n= ∀ = LL               (4)  
When a system achieves the implementation completeness = 1, it enters the integration queue. 
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Figure 6: Incremental increase in implementation completeness  

 
Two assumptions made for the Integration (Level t5(0), Fig 3) process are:  
1. Integration tasks for a system are always greater than or equal to its Implementation tasks  
2. Integration tasks of a system that are dependent only on itself are assumed to be completed 

during the implementation process. Therefore, level of integration completeness of a 
system with regard to itself ( c

AAt ) is ‘1’ at all times.  

a) Independent Systems b) Dependent Systems 



  

Similar to Implementation, systems can be integrated in series or in parallel depending on the 
span-of-control. The total time needed to integrate component systems with low or high 
span-of-control is calculated using Equations 3 or 4 respectively.  When both the Implementation 
and Integration processes for the given requirement are complete, Validation and Verification 
(Level t6(0), Fig 3) checks for a completeness level of 1 for all component systems. If the 
requirement successfully passes Validation and Verification, it is said to be ready for Testing.  

Testing the Exploratory Model 
Twelve test scenarios were implemented via simulation using our exploratory model to 

understand the dynamics underlining acquisition management in an SoS environment. The 
test-cases specifically study how dependency between requirements, span-of-control of SoS 
managers and engineers and different project risk profiles affect the time taken to successfully 
complete the project.  
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independent requirements and low risk 
profile 
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Figure 8 : Low span-of-control, dependent 
requirements and high risk profile 

 
A project with two independent requirements, a high span-of-control (‘1’) and low risk profile 

was successfully implemented in 60 time-steps (Fig 7). On the other hand, a project with two 
dependent requirements (dependency matrices shown in Table 2), low span-of-control (‘0’) and 
high project risk needs 1682 time-steps to complete (Fig 8).  



 

  

The time needed to complete 
projects in all twelve test-cases with 
independent or dependent 
requirements, varying 
span-of-control and different risk 
profiles is plotted in Fig 9. The 
abscissa represents span-of-control 
while the ordinate represents the risk 
associated with the project (1: Low, 
2: Medium, 3: High). 
The results from these twelve 
test-cases were used in a sensitivity 
analysis to show the relative 
importance of each of the three 
parameters on the total time needed 
to complete the project.  
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Figure 9 : Effect of requirement dependency, 

span-of-control and risk profiles on total time to 
complete  

Sensitivity Analysis 
Sensitivity analysis further investigates the impact of the three parameters (requirement 

dependency, span-of-control and risk profile) studied in the 12 test cases.  
Requirement Dependency: Compare cases of dependent versus independent requirements while 
keeping span-of-control and risk profile constant (Table 4). Risk profiles are labeled ‘1’ for 
Low, ’2’ for Medium and ’3’ for High. Projects with dependent requirements take longer (by a 
factor between 1.28 to 2.13) compared to projects with independent requirements. 

Table 4: Effect of Requirement Dependency 

Span of 
control Risk 

Ratio = 
)(
)(

IndepenentTime
DependentTime  

 
Span of 
 control 

 
Risk 

 
Ratio = 

)(
)(

IndepenentTime
DependentTime  

1 1 2.13 0 1 2.004 
1 2 1.88 0 2 1.95 
1 3 1.28 0 3 2.11 

 
Span-of-Control: Compare cases of low versus high span-of-control while keeping 
requirement-dependency and risk profile constant (Table 5). Projects with low span-of-control 
take longer (by a factor between 4.93 to 8.155) compared to projects with high span-of-control. 

Table 5: Effect of span-of-control 

I/D Risk Span-of-control Ratio I/D Risk Span-of-control Ratio 
I 1 0/1 7 D 1 0/1 6.578 
I 2 0/1 7.09 D 2 0/1 7.34 
I 3 0/1 4.93 D 3 0/1 8.155 

 



  

Risk Profile: Compare cases of three risk profiles, while keeping requirement-dependency and 
span-of-control constant (Table 6).The ratio is an increase from a lower risk profile to a higher risk 
profile. For example: For a project with independent requirements and high span-of-control, the 
ratio of time needed for a medium risk (2) profile versus a low risk (1) profile is 1.61.  

Table 6: Effect of Increasing Project Risk  

I/D Span-of-control Risk Ratio I/D Span-of-control Risk Ratio
I 1 1 - I 0 1 - 
I 1 2 1.61 I 0 2 1.63 
I 1 3 1.65 I 0 3 1.155
D 1 1 - D 0 1 - 
D 1 2 1.43 D 0 2 1.59 
D 1 3 1.13 D 0 3 1.25 

Results 
Some insights gained from testing the exploratory model via a sensitivity analysis are: 

1. As expected, time to implement dependent requirements is always greater than the 
independent case; the amount of increased strongly depends on the span-of-control of the SoS 
managers and engineers and the project risk.  

2. Time needed to implement projects with higher risk profile is always greater than the time 
needed to implement the project with lower risk profiles. 

3. With high span-of-control, time needed to complete a project increases linearly with an 
increase in project risk for both dependent and independent requirements. However with a 
low span-of-control, the time needed increases exponentially with an increase in project risk 
for both dependent and independent requirements. 

4. The sensitivity analysis shows that the time needed to complete a project is much more 
sensitive to the span-of-control of the SoS engineers and managers than to the project risk or 
the dependencies between the requirements. 

5. A project with high span-of-control is better equipped to recover from the debilitating 
disruptions associated with a high risk, thus making the acquisition process more resilient.  

Conclusion 
From historical data related to past SoS-oriented defense acquisition programs, we summarize 

the common causes of failure as: a) misalignment of objectives among the systems, b) limited span 
of control of the SoS engineer on the component systems of the SoS, c) evolution of the SoS, d) 
inflexibility of the component system designs, e) emergent behavior revealing hidden 
dependencies within systems, f) perceived complexity of systems and g) the challenges in 
accurately representing them. These sources of complexity were mapped to a section of the SoSE 
Process Model recently introduced by Sage and Biemer (2007) to identify where manifestations of 
these complexities might arise and begin to assess how they may impact the acquisition process.  

This mapping in conjunction with the 16 technical and technical management SE processes 
identified by the SoS-SE Guide (U.S. DoD 2008) was used to develop a conceptual model for 
pre-acquisition and acquisition strategy activities. The acquisition strategy model takes an 
incremental approach to the evolutionary development of an SoS and allows processes lower in the 



 

  

hierarchy to affect change in the processes above them. Thus, the model exposes the 
interconnections among levels and uses these to implement evolving requirements and design 
solutions in the component systems of the SoS. 

These mappings and conceptual models are all directed toward providing a basis for a 
computational exploratory model for acquisition strategy in an SoS environment. The purpose of 
the model was to explore the complexities that arise in SoS acquisition programs due to 
evolutionary development of the SoS, heterogeneity of the component systems as well as the effect 
of management parameters such as span-of-control on the acquisition programs. Based on user 
defined inputs for the requirements and their dependencies on each other, the model uses series 
and parallel processing to implement and integrate the component systems fulfilling the 
requirements. Disruptors and enablers are used to affect non-linear behavior in the model. This 
exploratory model allows evolving requirements and design solutions to trickle through the lower 
processes and uses disruptors to affect specific component systems, which in-turn affects change 
in processes higher up in the hierarchy. Results from the test-scenarios underline the importance of 
span-of-control of SoS managers and engineers on the timely completion of even high-risk 
projects, by making the acquisition process more resilient and agile in the face of disruptions.  

The uniqueness of the models (both conceptual and computational) lie in their ability to 
provide a better understanding of the acquisition process in an SoS environment along with 
computational tools for better decision-making for the higher levels of SoS management. We hope 
that the insights gained from this research will significantly improve the probability of success of 
future acquisition programs of complex SoS.  
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