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Abstract. Increasingly complex problems drive systems engineers to develop novel decision 
making processes. The breadth of complex problems demands the interaction of various groups, 
each focusing on specific areas but all addressing a higher level common cause. The process 
brought forth in this paper integrates a series of methods, some widely accepted and others which 
are novel in nature. Quality Function Deployment is used to capture customer desires and focus 
engineering level requirements. Multi-Attribute Decision Making is used to identify system 
configurations when multiple and competing objectives exist, which is a situation where 
traditional optimization struggles. The process of surrogate modeling is introduced to rapidly 
access elements of modeling and simulation, a necessary step to analyze system options. The very 
integration of these methods enables collaborative decision making.  A proof of concept is 
presented where each of these methods is applied to aid in the portfolio analysis of renewable 
energy system options for a remote off-grid site. 

Introduction  
Motivation. As systems engineers tackle increasingly complex problems, we struggle as a 
community to find and apply practical methods, processes, and proven best practices to guide and 
inform decisions that must be made. Additionally, in the early phases of a problem, we are quick to 
dismiss complex detailed engineering level analysis such as modeling and simulation in order to 
properly scope a plan of attack within a feasible time frame. A process is needed which includes 
several key facets. Given that detailed engineering analysis is traditionally both time- and 
resource-intensive, methods must be used to best capture customer requirements such that 
engineering analysis is properly and effectively directed. Additionally, it is desired to have 
complex, quantitative engineering level analysis inform decision making as early as possible when 
facing a problem, especially in the very beginning when comparatively little is known about the 
problem. Finally, it is expected that decision making is supported when multi-faceted problems 
present many competing objectives. This paper will describe a process that integrates both 
accepted and novel systems engineering methods to support decision making when faced with 



  

complex problems. To assist the reader with understanding this process, a practical application of 
these methods to addressing energy systems is discussed throughout this paper. The engineering 
analysis presented in this paper is an expanded discourse of methods presented by Ender et al. 
[2008] as applied to energy systems portfolio analysis. 

Novelty of Approach. The application of methods described in this paper for energy systems 
modeling moves beyond the notion of individual component design. The approach uses elements 
from the field of systems-of-systems research, where each system is independently managed and 
operated. In this line of analysis, the capability of the integrated whole will produce results greater 
than sum of the individual components. An examination of whether the hybrid energy systems 
studied in this paper are considered a system or a system-of-systems is beyond the scope of this 
paper; the notion of systems-of-systems is briefly introduced because the analysis methods used in 
this study are born from this field of research.  

Research methods conducted on capability-focused and inverse design for analysis of complex 
systems-of-systems [Ender, 2006; Biltgen et al., 2006] will be used to identify hybrid energy 
solutions that meet dynamic requirements. This includes enabling inter-system requirements 
tradeoff analyses. Surrogate models, which are bounded equation representations of more complex 
tools that offer negligible loss in fidelity, are created based on trusted modeling and simulation 
tools. These surrogate models (in this case neural networks) can be executed thousands of times in 
fractions of a second, enabling rapidly resolved trade-offs that yield results that might not 
otherwise have been discovered with traditional means. Decision-makers are afforded a novel 
real-time, panoramic view of trade-offs and parametric sensitivities via advanced visualization 
features. The result is the ability to conduct qualitative decision-making based on rapid 
manipulation of quantitative modeling and simulation, initially described by Ender et al. [2008]. 

Evaluating Hybrid Power Systems. In order to put forth a novel methodology for solving 
complex system problems, a thorough examination is given of approaches for solving similar 
problems. Hybrid renewable power system designs can be evaluated with a number of methods. 
The most straightforward method of evaluating a system is a detailed time-series simulation, 
which has been used to a great extent [Lilienthal et al., 2005; Manwell et al., 1998; Borowy and 
Salameh, 1996; Beyer and Langer, 1996; Diaf et al. 2008; Celik, 2003]. It involves dividing a 
study period into discrete time steps, such as a year divided into hourly blocks. At every time step, 
the energy flows of the system are calculated based on load, available renewable resources, 
available storage state, and control logic. Simulation approaches may be easily scaled to any 
desired system configuration and any level of component and control detail, with arbitrarily high 
levels of nonlinearity. However, such approaches require time-series environmental and load 
information, which may not be available but can be synthetically generated. 

Other approaches generally trade some level of detail for faster run-times. Statistical 
approaches have been used with some success to estimate the effectiveness of hybrid power 
systems. Techniques have been developed to estimate the loss of power supply probability for 
hybrid renewable systems comprising of solar, wind, and battery storage [Abouzhar and 
Ramakumar, 1991; ibid, 1993; Tina et al., 2006; Karaki et al., 1999]. Such methods enable the 
allocation of time into large discrete steps, such as a day or a month. An advantage of this method 
is that it produces probabilistic rather than deterministic results; to acquire the same information 
from a simulation could require multiple Monte Carlo runs. 

A frequency domain approach has been successfully applied for power quality assessment of 
wind turbines [Vilar et al., 2003], and in the evaluation of controllers [Uhlen et al., 1994]. For such 
uses, computation time savings can be realized compared to a time-series approach, especially 



 

  

because consideration of power quality necessarily involves consideration of frequency, which 
implies very small simulation time steps and thus long simulation run-times. 

Optimizing Hybrid Power Systems. In renewable power system design, one of the principle 
objectives of optimization is the selection and sizing of system components. With costs stated in 
terms of unit costs, and with simplified linear component and control models, the selection of 
component sizes has been successfully performed with a linear programming approach [Garcia 
and Weisser, 2006; Chen and Atta-Konadu, 1997]. This constitutes both an optimization and 
evaluation scheme, though fundamentally such an approach still requires the same time step 
resolution as a nonlinear simulation approach and is still a time-series model. 

A single optimization objective can be used, such as conversion efficiency as shown by 
Borowy and Salameh [1996]. The most common optimization method seems to be to optimize a 
single economic parameter (such as overall system cost) while meeting system performance 
constraints (such as loss of load probability) [Kellogg et al., 1996; Habib et al., 1999; Muselli et 
al., 1999; Yang et al., 2007]. Multi-objective optimization has been used, with mixes of 
performance and economic objectives [Shi et al., 2007; Anagnostopoulos and Papantonis, 2008], 
where solutions are sought which may not be optimal with regard to any single objective, but 
which are Pareto optimal with respect to several. 

The system designer will want to select a design from somewhere along this Pareto frontier. 
However, there are two complicating factors. The first is that the final design selection, though it 
will be along this frontier, depends on the relative importance of the multiple dimensions, and this 
is a qualitative choice on the part of the designer or stakeholder. The second complication is that 
this frontier may move or change as a function of technical assumptions, constraints, or 
requirements. Designs which were once dominated may move to the frontier, and designs which 
were formerly Pareto optimal may cease to be so as conditions change. The performance of a 
design is a function not only of its component sizes but also of the assumptions behind it. 

Driving Need: Real-Time Design Exercises. Ideally, a hybrid renewable design and optimization 
environment would have the following characteristics: provide sufficient description of system 
performance to allow selection based on multiple objectives and constraints; allow easy 
exploration of the entire design space (different sizing configurations); allow easy modification of 
assumptions, requirements, and desired outcomes; provide probabilistic results; and be usable in 
real-time by the designer or decision-maker. 

The first goal of adequately characterizing the system will in many cases tend to favor a 
time-series simulation-based approach. The remainder can be satisfied through the use of a 
surrogate modeling approach. For any given system configuration and set of assumptions, a 
time-series simulation can adequately characterize the system; however, the desire to explore the 
design space and change assumptions in real-time necessitates a faster means of assessing the 
performance of a given system. If the designer is willing to limit the degrees of freedom of the 
system to the sizes of the major components and a handful of sensitivity variables, the system can 
be represented with regression representations of the time-series simulation.  

With fast-running surrogate models of the system, an array of possibilities becomes available. 
The surrogates can be incorporated into a final engineering design tool that puts all necessary 
information in the hands of the engineer or decision-maker, and allows them to fully understand 
the choices available to them. Technical assumptions can be changed rapidly, requirements can be 
adjusted as the decision-maker gains a better understanding of the real choices available, and the 
relative importance of various objectives can be clarified. If desired, technical performance 
characteristics can be mapped to higher-level non-technical objectives through the use of dynamic 
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Figure 1. Quality Function Deployment 

Quality Function Deployment (QFD). Rather than a report, a decision-maker can be presented 
with a dynamic tool. The results of individual simulations can even be incorporated into long-term 
planning exercises involving multiple years and multiple systems. In summary, a decision-maker 
can be presented with all the information necessary to choose one or more system configurations, 
with a bounty of available information and without the need to go back for more engineering 
analysis.   

Capturing Requirements 
This section will describe a method for efficiently directing engineering analysis by properly 

capturing the requirements or “voice” of the customer, and identifying those engineering 
characteristics that have the greatest impact on meeting requirements. 

Quality Function Deployment. Quality Function Deployment (QFD) is a formal technique for 

capturing the user’s requirements (voice of the customer) and mapping them to controllable 

product and process parameters or vehicle attributes (voice of the engineer)  [Akao, 1994]. This 
technique includes the creation of a series of matrices showing the association between specific 
features of a product and statements representing the voice of the customer, and uses teamwork 
and creative brainstorming as well as market research to identify customer demands and design 
parameters. The basic structure of the QFD is shown in Figure 1.  The customer requirements are 
listed along the vertical column on the left hand side of the QFD, and the engineering attributes are 
listed across the top row.  The impact of each engineering attribute on each requirement is mapped 
qualitatively on a scale of 0 (no relationship) to 9 (strong relationship).  Because these engineering 
attributes may have adverse impacts on various customer requirements, when used as part of the 
process introduced in this paper, these qualitative mappings may be positive or negative. 

Each requirement is assigned an importance weighting by the user, which may be done 
objectively on an arbitrary scale of 0-10, 0-100, or 
any similar scale capturing the level of fidelity 
desired. The importance weighting of each 
engineering attribute is found by multiplying the 
requirements weightings vector by the impact 
vector of that engineering characteristic. These 
attribute weightings are then normalized across 
all of the engineering attributes, which may be 
used to guide a Multi-Attribute Decision Making 
process as described in the next section. It is 
important to note that there are many accepted 
and proven techniques for creating QFD’s, 
including the application of the well known Seven 
Management and Planning Tools [Mizuno, 1988] 
to collaboratively develop each of the QFD 
regions.  

Energy Systems QFD. An example of a QFD is 
given in Table 1.example, which will be used 
throughout this study. A listing of high-level 
requirements is given along the leftmost column, with notional importance weightings provided. 
Note that many of these requirements are not measurable through traditional energy systems 



 

  

Direction of improvement

Metric 1

M
et

ric
 2

Pareto 
Optimality

D
ir

ec
ti

o
n

 o
f 

im
p

ro
ve

m
en

t

-

+

 
Figure 2. Evaluation of Candidate Concepts 

through TOPSIS 

models (i.e. regional “energy independence” or the “maturity” of a given technology). 
Quantitative engineering characteristics are given along the top row. These metrics are those that 
are typical results of an energy systems modeling and simulation tool, such as the energy 
production of each source (i.e. wind turbine) and the ability to meet desired load demand (i.e. 
capacity shortage). Note the qualitative mappings; for example wind turbine has a strong negative 
impact (-9) on “ease of integration” into an existing energy system, where as it has a strong 
positive impact (9) on “energy independence”, meaning that energy independence is more likely 
with increased wind turbine energy production. 
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Ease of Integration 5 0 0 -1 -9 -3 -1 -5
Reliability of Equipment 5 0 0 -1 -3 -1 -5 -5
Availability of Power 8 -9 0 0 0 0 0 0
Technology Maturity 5 0 0 0 3 2 9 2
Energy Independence 2 -9 9 -9 9 9 -9 5
Environmentally Friendly 2 0 9 -9 9 9 -9 2

TOPSIS Weighted score 0.354 0.142 0.181 0.035 0.102 0.083 0.102
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Table 1. Notional Energy Systems QFD 

Multi-Attribute Decision Making 
With the need to address increasingly complex and multi-faceted problems, there is a strong 

need to incorporate methods for decision making when dealing with multiple and competing 
objectives. For the energy systems example, take the given problem where we wish to design a 
hybrid system that both provides reliable power yet minimizes fossil fuel dependency. The 
“optimization” of this system is completely 
dependant on the relative importance of 
those objectives, which determines which 
requirements will be sacrificed for others. 
Most optimization techniques for design 
are poorly suited to handle multiple and/or 
conflicting objectives. The design of 
complex interacting systems requires 
holistic solutions that are valid in multiple 
dimensions; given that requirements can 
impact multiple design variables, and 
measures of effectiveness may be 
conflicting. We are no longer interested in 
a system design that performs best in only 
one area, but one that is Pareto optimal 
among all metrics. Beginning in the 1950’s 
and continuing through the 1970’s, the 
U.S. Department of Defense invested 
heavily in the development of 
mathematical techniques for decision making in the presence of many attributes which are valid 
for a large number of complex system design processes.  These are referred to as Multi-Attribute 



  

Decision Making (MADM) techniques  [Yoon and Hwang, 1995]. 
There are many such MADM tools documented, however the Technique for Ordered 

Preference by Similarity to Ideal Solution (TOPSIS) will be discussed in this study  [Hwang, 
1981].  This uses a weighted series of criteria to identify the best and worst of each criterion and 
combines them into the theoretical best and worst points, as shown in Figure 2. Actual ranking is 
performed based on maximizing the normalized distance from the theoretical worst and 
minimizing the distance from the theoretical best. For the process used in this paper, these 
weighted series of criteria are identified through the QFD. The “points”, or designs evaluated 
through the TOPSIS process are created through interaction with modeling and simulation, which 
is introduced in the next section. 

Integration with Modeling and Simulation 
The methods introduced in this paper, as part of an integrated decision making process, 

presume that system options exist to choose from, given that each of those system concepts is 
associated with measurable performance and cost metrics.  However, it is impossible that all 
perturbations of options exist, or that every perturbation of potential operational uses of those 
options are possible to predict. For example, how would a 5% variation in available wind affect the 
performance of a hybrid energy system that contains wind turbines, over the course of a day or 
month? How would that affect the ability to meet load demand? Or for example how would a 
decision maker measure the amount required from another source of energy, say photovoltaics, to 
account for uncertainty in wind, and can this be done without adding reliance on fossil fuels? To 
answer those questions, we can guess, or make assumptions based on historical data. Modeling and 
simulation is the preferred method, but in most cases it can not be used to answer every 
hypothetical question. This section will focus on informing decision making through complex 
engineering analysis. 

Modeling and Simulation Environment. The specific modeling and simulation environment 
needed for analysis is situated within a framework given in Figure 3 for capturing the various 
elements of an energy systems problem. The potential options for power generation and storage 
must be collected, in addition to hour-by-hour load demand and related atmospheric conditions 
over the course of a year. These are all used to drive the way modeling and simulation is executed, 
specifically described by a Design of Experiments. Response data from executing the modeling 
and simulation is regressed to create surrogate models that, when coupled with specific cost 
models, are used to assemble the integrated decision making tool. This paper will describe each of 
these elements; however this section will focus on the modeling and simulation effort of this 
process. 

The authors have used HOMER as the modeling and simulation backbone behind the decision 
making tool set developed for this effort.  HOMER is a design tool for grid-connected or off-grid 
power systems developed by, and available freely through, the U.S. Department of Energy’s 
National Renewable Energy Laboratory (NREL) [Lilienthal, 2005].  Given a desired energy load 
profile, climate conditions such as wind patterns and available sunlight, and an array of energy 
sources (e.g., diesel generators, wind turbines, photovoltaic arrays, among many other options) 
HOMER determines the lower-cost energy solution, and provides sensitivities to changes in costs 
and resources. With its large database of components and performance models, HOMER 
significantly simplifies the design process.  However, its trade space analysis has a strong reliance 
on a computationally intensive combinatorial design process. Furthermore, HOMER selects 
systems based exclusively on the levelized cost of energy of the system, and cannot rank designs 



 

  

based on any other criteria. However, the authors decided that the logic within HOMER could be 
captured in a form usable by a higher level decision making tool to make decisions based on other 
technical and non-technical criteria, and to aid in longer-range energy portfolio planning. 

 

 
Figure 3. Energy Systems Modeling Simulation Framework 

A test case was developed in order to determine the feasibility of capturing HOMER’s 
capabilities in a tool with shorter runtimes and the ability to trade between various energy sources 
over a multi-year investment timeline. A notional scenario was created, using a sample load profile 
and sample wind and solar radiation data for a location in central Asia. The system configuration 
was that of a stand-alone renewable/fossil power system, with scalable/optional components. 
Components modeled included non-tracking photovoltaic (PV) arrays, a wind turbine with a fixed 
steady-state wind/power curve, a diesel generator modeled as a steady-state device, and lead-acid 
batteries. Sensitivity variables were also controlled, including average solar insolation, average 
wind speed, the hub height of the wind turbine, the efficiency of the DC to AC inverter, and the 
required operating reserve.  

Surrogate Modeling. The primary enabler of rapid manipulation of complex modeling and 
simulation within a higher level analysis tool is through the use of surrogate models.  Surrogate 
models, based on response surface methodology  [Myers and Montgomery, 1995], are equation 
regression representations of more complex modeling and simulation tools that maintain a fairly 
high level of accuracy when compared to those original tools.  A surrogate model is made by 
regressing against a set of data (Figure 4). For a very complex system model requiring time 
consuming computer codes to run, a structured method for data sampling with the minimum 
number of simulation runs (or “experiments”) is needed. A statistical approach to experimental 
design can be useful in drawing meaningful conclusions from data. A statistical Design of 
Experiments (DoE) is such an approach, which plans simulation execution cases such that 
meaningful conclusions can be drawn.  
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Figure 4. Surrogate Model Generation Process 

These equation-based surrogate models can take most any form, based on assumptions made 
on the way a given response varies as a function of given variables. The most common form of 
surrogate models is the polynomial format. However, more complex design spaces cannot be 
approximated with polynomial equations, such as in a complex systems integration problem where 
one may not necessarily be interested in the optimization of a particular system component but on 
being able to quantify the interactions between the individual systems.  Rather, neural networks 
can be used to generate surrogate models of multimodal, discontinuous, or otherwise highly 
nonlinear design spaces, which are commonly encountered when modeling hybrid energy systems.  
When used to create surrogate models, a neural network is a set of nonlinear equations that predict 
output variables from a set of given input variables using layers of linear regressions and S-shaped 
logistic functions. 

The assumptions regarding how a given response varies as a function of select variables, i.e. 
linear or multimodal, governs the appropriate DoE to use in an analysis. For this study, a 
customized DoE is used which combines a Central Composite Design (CCD) used to capture the 
corners, a Latin Hypercube Sample (LHS) to capture multimodal effects within the design space, 
and a random set used for validation (but not regression). 

In summary, because surrogate models are equations, albeit complex ones, they can be rapidly 
executed many times and provide a user the ability to access the analysis capabilities of modeling 
and simulation without the computational delay. Once these surrogate models are created, a design 
space can be explored by rapidly generating thousands of cases, each with small (but measurable) 
loss in fidelity from the original modeling and simulation environment. 

Robust Design Simulation 
Quality Engineering. The quality of a system, or its ability to meet requirements consistently, is 
jeopardized by uncertainty and risk.  The evaluation of a design may not be driven solely by its 
capability to achieve specific mission requirements or remain within specific product constraints. 
Rather, a robust design process, or one that leads to a design that is least sensitive to influence of 
uncontrollable factors, is needed to balance mission capability with other system effectiveness 
attributes. Zang et al. [2002] describe those design problems that have a nondeterministic 
formulation, including the field of robust design, as uncertainty-based design. 

In the context of an energy system that incorporates renewable sources of power production, 
there is a certain amount of risk created by the intermittency of the energy source. For example 
wind is not always available to power wind turbines, and when it is available it usually changes 
velocity with an element of randomness which directly applies an element of randomness and 
uncertainty to the power output of that wind turbine. Elements of robust design are used in this 
study to quantify the uncertainty of achieving certain metrics due to varying factors uncontrollable 



 

  

by the designer and/or decision-maker. 

Uncertainty Quantification through Monte Carlo Analysis. Since the use of surrogate models 
enables modeling and simulation cases to be evaluated very quickly, Monte Carlo investigations 
comprising hundreds of thousands of runs can be conducted within several seconds on a standard 
desktop PC. This process enables the uncertainty quantification introduced earlier. 

An example of a sensitivity study is shown in Figure 5. A given number of variables are treated 
as noise variables in this study, meaning that operationally the decision maker has no control over 
their fluctuations. As an example, atmospheric data such as the available solar irradiance and wind, 
as well as the price of fuel are treated as noise variables. This means that although these variables 
may be known in a controlled M&S environment, they are not known exactly in an operational 
environment. The noise variables of average wind speed, average annual solar irradiance, and fuel 
price are assigned distributions, and thousands of cases are run through a neural network surrogate 
model of levelized cost of energy. The results can be plotted in a cumulative distribution function, 
allowing the engineer to quickly gauge, for example, a 90% confidence upper bound on energy 
cost. Such methods enable the engineer to find robust solutions which offer high likelihood of 
success. 

Cost of Energy ($/kWhr)

P
ro

ba
bi

lit
y

90% Probability 
of Achieving 

Cost Goal

 
Figure 5. Uncertainty Quantification through Monte Carlo Simulation of Surrogate Models 

Capability-based Inverse Design 
Top-down Design. Systems engineering introduces the notion of top-down design, which as 
Blanchard [1991] explains, involves viewing an entire system comprised of its components as a 
whole functioning unit. This requires an understanding of how those components efficiently 
interact, with optimization of macro-level structure emphasized rather than solely focusing on 
micro-level system components [Chapman et al., 1992]. This drives the need for having a 
complete identification of system requirements, and relating these requirements to specific design 
criteria. The goal of the systems engineer is to represent the system as a model and evaluate it 
through a simulation.  The entire system design and development process requires an 
interdisciplinary effort to meet all design objectives effectively. This requires a complete 
understanding of the various design disciplines, and most importantly for the systems engineer, 
how the interrelationships between those disciplines affect overall system capability. The same 
conclusions can be drawn for the interrelationships of the components within a system-of-systems, 
where individually operated and managed systems interact to affect an overall metric. 

For bottom-up design, selections are made at the lowest level, which define the capability at 
the next highest level. This results in one design point flowing up the hierarchy. An optimizer 
could be used to search the design space at each level (one level at a time) for options that do not 
violate constraints, and minimize/maximize a response. The top-down design approach will yield 
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Figure 6. Systems Engineering Process with Top-Down 
Hierarchical Requirements Flow [Ender, 2006] 

multiple combinations of variable values that meet constraints at higher levels.  
The systems engineering process can be broken down into a hierarchy of decision making 

levels. The highest level is the overall capability level, which identifies the overall need or 
function that must be addressed. This system concept description is created with the intent of 
meeting a requirement at the overall capability level. Next below is the system level, which 
produces a system description, for example a performance requirement. At the lowest level is the 
subsystem level that produces a subsystem performance description. Baumann [2005] states that 
the systems engineering process is applied to each level in the design hierarchy, one level at a time. 
This is a “top-down, comprehensive, iterative and recursive” process and is “applied sequentially 
through all stages of development”. It transforms needs and requirements into a set of system 
product and process descriptions. Figure 6 describes this systems engineering concept, showing 
the iteration step that 
must be taken across 
each hierarchical level 
[Ender, 2006]. This 
figure depicts an 
important fact about this 
systems engineering 
process: requirements 
are decided upon and 
flowed from the 
top-down in the design 
hierarchy, and at each 
level there must be an 
iteration to make sure 
that the design solution 
satisfies the 
requirement, one level 
at a time. 

Filtered Monte Carlo through Inverse Design. According to Kuhne et al. [2005], “Probabilistic 
Design is the process of accurately accounting for and mitigating the effects of variation in part 
geometry and other environmental conditions while at the same time optimizing a target 
performance factor.” However, using mathematical methods, the authors state, probabilistic 
design may prove to be a complex and daunting task. Using logic and graphics along with Monte 
Carlo simulation, Kuhne et al. demonstrate an alternate visual approach called a “Filtered Monte 
Carlo” that achieves useful probabilistic design results efficiently and simply. This method 
assumes the existence of a fast-running simulation model that can be called on many times, and 
works by populating a design space with response values obtained by running a simulation many 
times with randomly selected values from bounded distributions on input variables. If the output 
for that particular Monte Carlo simulation trial violates any response constraints defined a priori, 
that response is discarded. The outputs that do not violate the constraints are then plotted in a 
scatter plot fashion versus any of the inputs, giving the user the ability to visualize sensitivity to 
variation in the inputs. However, the authors note the biggest challenge to this approach is with 
problems with large numbers of inputs and responses (i.e. >10), which drives the need for 
improved visualization and data mining tools that would enable the user to simultaneously explore 
the design space while conducting input variation sensitivity.  



 

  

Up to this point, the ability to rapidly generate point solutions has been addressed. Using 
surrogate models enables the generation of many point solutions very quickly. Probabilistic 
techniques can then be used to generate thousands of point solutions across the entire design space. 
This filtered Monte Carlo method is used to generate “clouds” of non-unique system solutions at 
the capability level. This process truly enables inverse design, where data is generated using 
bottom-up tools but analyzed with a top-down view; any response can be treated as an independent 
variable. 

Collaborative Decision Making 
The various methods which compose the process introduced in this paper have been applied to 

the informing of energy system related decision making. At this point, each of these methods will 
be brought together in an integration framework supporting collaborative decision making. The 
interactive tool developed through this research is shown for two scenarios in Figures 7 and 8. 
Note that high level requirements (such as ease of integration, energy independence, etc.) are 
shown with slide bars which control the importance weightings. These are the importance 
weightings which are translated through the QFD to drive the importance of the various simulation 
specific attributes (for example capacity shortage, diesel fuel used, etc.). The user has the ability to 
control the desired load demand over time, as well as to limit the amount of investment dollars 
over time. Assumptions such as average insolation and average wind speed may be adjusted, as 
well as changes in equipment purchase and maintenance costs over the life of the project (not 
shown). The user may change any of the inputs and re-evaluate, and in a few seconds the system 
will assess thousands of portfolio options through the use of surrogate models, decide which 
options best meet the weighted requirements through the MADM process, and select annual 
equipment purchases for the life of the project. 

The rapid execution time of the tool, combined with the ease of adjusting requirements, 
budgets, and assumptions, allows a decision-maker to answer a multitude of questions without 
having to execute the original M&S through a number of different cases. This eliminates the lag 
created when the decision-maker redirects the engineering analyst. The amount of visual 
information available helps the decision-maker better understand the nature of the problem, and 
the use of adjustable non-technical requirements allows the decision-maker to treat these often 
un-quantified (yet still important) factors in a more formal and considered manner. 

An example of use is shown in Figure 7. The user has specified a load growth profile, starting 
at 20 kW average in 2007 and growing to 46 kW average by 2011. The user has also specified a 
capital investment budget, ranging from $50,000/yr in 2007 to $230,000/yr in 2008. Most 
requirements are given equal weighting, but "energy independence" and "environmental 
friendliness" are set to zero; that is they do not factor into the decision. Under these conditions, the 
tool decides to purchase diesel generators, and thereafter to improve power quality with battery 
purchases. However, the fuel budget is large (note that in this implementation, operations costs are 
separate from the purchase budget, and have not been constrained).  

In Figure 8, the requirements have been altered so that that "energy independence" and 
"environmental friendliness" are rated equally with other factors. All other assumptions and 
settings are kept the same. When the user selects these “greener” requirements weightings, those 
weightings are instantaneously sent through the QFD which reprioritizes the engineering 
characteristics, and in turn selects a new “best in class” through the MADM process evaluation of 
the surrogate model results. With the “green” requirements weightings, the tool still purchases 
diesel generators early on, but once a sufficient budget is available, it begins to purchase 



  

photovoltaics, batteries, and wind turbines. Noting the bottom-right plot in Figure 8, after the first 
year, the diesel fuel consumption drops to almost nothing. 

 
Figure 7. Integrated Framework (Scenario Favoring Fossil Fuel) 

 
Figure 8. Integrated Framework (Scenario Favoring Renewable Energy Portfolio) 



 

  

Conclusions 
This paper introduced a systems engineering process that enables real-time decision making 

through integration with rapid modeling and simulation. It is desired to have complex, quantitative 
engineering level analysis inform decision making as early as possible when facing a problem, 
especially in the very beginning when comparatively little is known about the problem. Elements 
of Quality Function Deployment, Multi-Attribute Decision Making, surrogate modeling, and 
robust design enable qualitative decision-making based on quantitative tools. An energy systems 
problem is used to show the application of these methods in order to guide portfolio planning. An 
advisory and design tool was introduced that aids decision-makers with robust planning and 
implementation of effective renewable energy solutions. 
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