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Abstract: A top-own scenario based approach is a typical method generating the product
breakdown structure (PBS) in systems engineering. While it takes time and effort to perform the
scenario based PBS construction, it is the safest approach not to omit any functions. On the other
hand, a design structure matrix (DSM) approach to PBS construction is a bottom-up approach
based on modularization concept that provides a merit of quick PBS construction while the sanity
of its results may not be assured.

Accordingly, this study presents trade-off results between the two approaches to uncover problems
in the DSM-based clustering method and proposes improvement approaches to enable the
interfaces with external systems, static elements, as well as a new capability to handle the large
number of clustering elements.
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Fig 1 System design process
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Fig 2 The context diagram of railroad car system
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Fig 3 The system scenario of railroad car system




AlLtE]

1]/
N 15

P

[a1]
o —
o 2
N6
o
W Ol
20
L _
_I__m _H_O.” 3 - - —_— o
%0 0o IT = KK of K 7
- 3 | ®|S|® roxl ~ <
i w KR W Sl ™| K| 5
T — = | T =_._ O | k0| _A_ﬂ . ]
- O SRS 0 ofl | =5 | o ! === |¥| &
o %0 R | ol | ol | <l oH o == el _ KKK R WS
2 o 6| U0 |10\ 1| || of | 0 fp | B PR e eI E AR R b £
a T UL 0|7 | & | O0b| W | %o |f| =T | | KL e DY EIES Aol || R0 @ >
%M___m | RI|TH [of |’ |<0| 30T K- |3 || ® K| ||
H oo 2 g
A 8 Ir g .
R R S 5 w0 ‘
1[e] — -
o0 |2 X L Ly I 1 g
W0+ 3 o <l or ol z =
a Kl ) Rl A K g
K o Ok © 4
I s o 0
= UK wﬁ o
w1 H N )
D= < o “ =
S Xk 3 w0 o
o oR 2 o o< 2
oM< - H = =
w2 rU =
o U T
.__A._o 03 %
ow o &
m &
Ll K]
< <



DSM Z[8F Clustering 8FEIE 0] o/} PBS 5. DSM 7|8t Clustering & E0| A|LIE[2
7|8k A|AR of 7|EIE] BB JtE 2 A0|E EO0l= W2 “Bottom-up” HAIO 2 FIHEICHE
ZJd0|Ct. DSMEHE S X &3dto{ PBS #5HS T WM 71 WX st U2 MY &9
MES MEiSIE Zolct HEZRIE AAES| PBSE 755H7| {SiA E 291 20| & 307H9]
THES MEISHRACE
HE TEE ER HS THE HE
1 | SEHMoIE X 16 | o|%t
2 | RS LRAOE R 17 | ZA &% 0]
3 | ASHR2HEXR 18 | ME LY & K|
4 | 2TA M| 19 |HVAC
5 |z 20 | CH&AF =&Y
6 | AtO|lE =R 21 | ARUE K|
7 | X2 = 22 | 37I1¢57]
8 | ZEHA 23 | IZEEK|
9 |EE 24 | #IIE K]
10 | EUE 25 | QIHE
11 | L& 26 | FFIZE
12 | RIF7t S2HAEY 27 |=go|la
13 | ™7 28 | &
14 | 7| 29 | SEMYEX
15 | HHE{2] 30 |BF
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Fig 4 The DSM of railroad car system
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Fig 5 The result of clustering for railroad car components
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Improvements to DSM Clustering Approach for PBS
Construction
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Abstract: A top-down scenario based approach is a typical method generating the
product breakdown structure (PBS) in systems engineering. While it takes time and effort
to perform the scenario based PBS construction, it is the safest approach not to omit any
functions. On the other hand, a design structure matrix (DSM) approach to PBS
construction is a bottom-up approach based on modularization concept that provides a
merit of quick PBS construction while the sanity of its results may not be assured.

Accordingly, this study presents trade-off results between the two approaches to uncover
problems in the DSM-based clustering method and proposes improvement approaches
to enable the interfaces with external systems, static elements, as well as a new capability
to handle the large number of clustering elements.

Introduction

The PBS is a result of systems design that illustrates system components by
hierarchical structure. For building PBS, there is a scenario based PBS method that is
proposed by system engineering. The scenario based method is the method that looks
for the requirements function for system by describing usage of system according to time
flow. This is a top-down approach analysing from system level to sub-component level.
This method is particularly useful for developing new system. However, the scenario
based method requires a lot of time and efforts. It needs to make a scenario for each
level and compare/analyse various alternatives for implementing functions to physical
components. In summary, the scenario based PBS method has an advantage that it
would not omit any function since it is based on requirements, however, it has

inconveniences that it requires a lot of time and efforts to develop.

On comparing, DSM Clustering based PBS method is more efficient and faster. It first

selects components of appropriate level and then, identifies interface among selected
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components. Based on modularization concept, it next performs grouping on those
components that connected closely each other. This is a Bottom-up approach. Clustering
is a grouping of highly related components, and performs fast by computer application
with clustering algorithm. Therefore, this method can get a good result much faster than
scenario based method. However, it has several problems since it is not verified over the
time like scenario based method. Hence, this paper attempts to compare scenario based
method and DSM clustering based method by applying to same railroad car system. The
problems of DSM clustering based method will be addressed and the solutions for these
problems will be discussed. Furthermore, since the result of DSM clustering based
method depends a lot on clustering algorithm, the study for improving this method should
accompany with clustering algorithm improvement. Therefore, this study aims to propose
more efficient DSM based clustering algorithm through analyzing existing clustering

algorithms.

Problems & improvements of DSM based Clustering method

This section shows the result of scenario based system architecting method and DSM
based clustering method applying to same target system; railroad car system. PBS
results from each method will be compared in order to find out the problem of DSM

based clustering method, and we will discuss how to improve.

PBS construction by Scenario based system architecting method. The system design by
systems engineering starts from requirements analysis. Martin defined the design
process like <Fig 1>. The system design first collects requirements from stakeholders,
and makes scenarios based on this. The reason of making scenario is to include every
movements of system and users according to time flow so as to induce the system
function without any omission. The function here based on collected requirements, and

scenario contains both dynamic and static functions.




- Requirements 4——® | Systemn analysis
analysis [Optimization

Requirements t 4 Requirements f
loop ¥

Function analysis

[ allocation -
Fy standard
Design Loop form

Validation loop

Combination

Fig 1 System design process

Martin defined ‘Function’ as a task or activity in order to obtain the desirable outcome,
or capability of system and system elements. This function can be static or dynamic. In
here, dynamic  function is a function providing output  through
processing/handling/converting a certain input, while static function is a function without
processing/handling/converting. These static and dynamic functions perform a system

analysis and optimization, and the sub system is determined at compounding stage.

Scenario based PBS construction method is a “Top-down” approach as it is decomposed
from system level to sub system level by repetitive loop of requirements analysis/function
analysis/composition activities. PBS construction for railroad car system has to define
first the system boundary and then system and external system. Therefore, the system

context diagram of railroad car system can be drawn like <Fig 2>.

As have seen in <Fig 2>, the external system of railroad car system includes driver,
passenger, power system and signal/communication system. After defining system and
external system, system scenario can be made. FFBD (Function Flow Block Diagram) of

system scenario about passenger and railroad car system is presented in <Fig 3>.




Context

External Systems

Driver Passenger

oo Signal/
wer

Com.
system

system

Fig 2. The context diagram of railroad car system

Fig 3 The system scenario of railroad car system

The system function can be defined based on scenario such like <Fig 3>. After that, it
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goes through composition stage and defines sub system. As it is repeated process in
order to generate PBS, we can build PBS such like shown in <Table 1>. As you can see
from Table1, the design process that is on system level defined 5 of sub systems (level

1) and each sub system has sub components(level 2).

Level 0 Level 1 Level 2
Railroad car Total Control Device
system Auto car control device

Driving & Control
Auto car driving device

Driving cabin facility

Chassis
Window

Entrance

Passenger Cabin
Interior design

Aisle connection between

cars

Pantograph

Power Supply
Sub power supply

Chair

Passenger cabin handle

Facility Passenger guide facility

Air-conditioner/heater &

ventilation device

Travelling Bogie Frame

Air compressor

Connector

Hauling device

Suspension equipment

Propulsion equipment




Brake equipment

Power train

Table 1 The PBS of railroad car system (scenario based)

PBS construction by DSM based Clustering. Unlike to scenario based architecting method,
DSM based clustering method is performed by “Bottom-up” approach. The first thing has to be
done is “select component of appropriate level”. For railroad car system, total 30 components

were chosen (see Table 2).

No. | Components No. Components
1 | Total control device 16 | Chair
Auto car control
2 17 | Cabin handle
device
3 Auto car driving 18 Information guide
device device
4 | Driving Cabin facility 19 |HVAC
5 | Under Frame 20 | Bogie Frame
6 | Side Frame 21 | Hauling device
7 | Roof Frame 22 | Air compressor
8 | Bottom Platform 23 | Connector
9 | Window 24 | Suspension device
10 | Entrance 25 | Inverter
11 | Interior design 26 | Propulsion Device
Aisle connection
12 27 | Brake
between cars
13 | Pantograph 28 | Wheel
Power transmission
14 | Charger 29 .
device
15 | Battery 30 | Wheel-axle
-6 -
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Table 2 Target components for DSM clustering

When the components are selected, these are registered in DSM (component-based DSM).
On the Component-based DSM, correlations among components can be divided into 4; energy

exchange, information exchange, material exchange and physical interface.

With respect to 4 types of correlation, we give the score 0(no correlation), 5(a little of
correlation) and 10(strong correlation) according to strength of correlation among components.
As correlation scores are given like <Fig 4>, clustering analysis is now performed. The <Fig 5>
shows the result of upper components cluster in terms of high correlation, after analysing

clustering analysis of <Fig 4>.

Below <Table 3> gives PBS of railroad car system based on cluster result of DSM clustering
analysis. The case of cluster 2 cannot be found its representative upper function for all the

function of internal components.
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Level 0 Level 1 Level 2 Level 3
Railroad Car Under frame
system ) Side frame
Chassis
Roof frame
Partition frame
Window
Cluster 1
Entrance
(Cabin)
Interior
Aisle connection between cars
Chair
Handle
HVAC
Cluster 2 Total control device

Driving & control

Auto car control

Auto car driving device

Driving facility

Entrance

Pantograph

Information guide device

Propulsion

Inverter
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Propulsion motor

Cluster 3 Charger
(Power Supply) Battery
Cluster 4 Wheel
(Power Power transmission device
transmission) Wheel-axle
Bogie Frame

Hauling equipment

Cluster 5 Air compressor

(Travelling) Connector

Suspension equipment

Brake

Table 3 The railroad car’s PBS resulted from DSM clustering

Problems and Improvements of DSM based Clustering Method. We can find the biggest
difference between scenario based system architecting method and DSM clustering

analysis at the category of “additional facility”.

First of all, when we look at PBS resulted from DSM clustering analysis, “information
guide device” and “HVAC” cannot form any cluster as “additional facility”, hence it
belongs to Cluster 1(Cabin). The main reason of this difference is that existing DSM
based clustering method restricts DSM elements (analysis target) only to target system.
The “information guide device” offers information about current station and next station
to passengers, while “HVAC” provides fresh and proper temperature air to passengers.
However, since existing DSM method restricts DSM elements to clustering analysis
target system, it cannot mark information exchange between passenger and information
guide device, and material exchange between passenger and HVAC. Therefore, there is

no chance to bind passenger, HVYAC and information guide device to one cluster.

Secondly, “Chair” and “Cabin handle” also cannot form a cluster, but belong to Cluster
1(Cabin). The reason of this difference is because existing DSM based clustering
method does not consider the correlation with external system, and with existing 4-
correlation (energy exchange, information exchange, material exchange and physical

interface) it cannot describe the correlation among components those perform static
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functions. The function of both “Chair” and “Cabin handle” is to provide convenience and
safety to passengers. These two items do not result output through processing with any
input. Therefore, according to existing relation category, since “Chair’ and "Cabin
handle” does not have any energy, information and material exchange with passengers
and no relation indication, Passenger, Chair and Cabin handle cannot be bound to one
cluster. However, although Chair and Cabin handle does not result output through
processing with any input, it certainly provides convenience to passengers. We need a
new correlation category in order to form a cluster of static function components (i.e.

chair and cabin handle) and passengers.

Finally, we propose two methods to solve the problems of existing DSM based Clustering

method.

1. When we construct PBS using by DSM based Clustering method, performing ‘clustering’

including external system as target elements.

Some of clustering object components has stronger correlation with external
system. Hence, it can be performed ‘clustering analysis’ after including external
system to clustering object components. The cluster that is a result of clustering
analysis may contain external system. In this case, except external systems, the
rest of components can be regarded as actual cluster components. For example, it
integrated the components of railroad car system and external system and then
analysed. The result shows that Cluster 1 is composed of passenger, information
guide device and HVAC, however except passenger, only information guide device

and HVAC is regarded as Cluster 1’s components.

2. Generating new correlation category “service” that is able to describe correlation among

components those perform a static function.

Though static function components do not process input and provide output,
these have a certain purpose, elements and correlation for accomplishing the goal.
Therefore, we generate new correlation category “service” in order to describe the

correlation among static function components. These static function components
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mainly work for passenger security or convenience, thus it is reasonable to

categorise to “service”.

Problem and Solution of DSM based clustering algorithm

The core of DSM method is clustering analysis. The clustering analysis chooses the

best output among the outputs came from numerous iterative works. Therefore,

clustering analysis is difficult to calculate by manual; all clustering analysis is performed

by computer auto program. In summary, the core of DSM method is clustering analysis,

clustering analysis is performed by auto program, and therefore, clustering analysis

relies on clustering algorithm.

In this chapter, we analyse the existing clustering analysis program in order to find the

problem and propose our algorithm that can solve this problem.

Characteristic of clustering algorithm. The characteristics of clustering problems are

shown below.

1.

Receiving only correlation between two objects. It cannot describe characteristic vector for

each object. It is only provided correlation between two objects.

One object belonging to only one cluster. In the PBS, one component belongs to one

upper component (or subsystem) and cannot belong to various upper components.

Considering correlation of intra-cluster and inter-cluster simultaneously. It is same as

Lim’s A=0.5 criteria method.

Not being able to fix the number of cluster in advance. The clustering algorithm of
parameter approach usually starts with fixed number of cluster at the initial stage. There
are few algorithms those start running without knowing number of cluster. However, these
algorithms are difficult to apply in PBS construction. Therefore, we discuss this issue in

the next chapter.

Searching approximate optimal value rather than optimal value. The possible solution
case in the clustering problem can be expressed like formulation (1). As have seen in
below formulation, when we do not know the number of cluster, the number of alternative
increases. Hence, most of researches consider approximate optimal value within limited

time rather than finding optimal value.
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* M Cluster Coefficient

N i M
% .5 * N Mo.of Cluster
—— e M-=j : ™
Z (M! Z( 1) mj X ) * mC  Combination

M= j=1
| J
|

The case of N known

1

The case of N unknown

(1)

The types of existing clustering algorithm. The problem like PBS construction which only
knows correlation between object and do not know the number of cluster at initial stage,
generally applies partial optimization by iterative experiments. As it increases cluster
number, partial optimization is performed at each stage. The clustering algorithm
process by iterative experiments is shown in <Fig 6>. As seen in <Fig 6>, when we
increase the cluster number, the objective function value gradually increases (or
decreases in terms of objective function) and decreases (or increases) when it reaches
at a certain level. At this point, we assume it is an optimal cluster number. Therefore,

this clustering algorithm by a repetitive test is time costly.
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Fig 7 Flowchart of the Thebeau’s clustering algorithm
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Ronnie E. Thebeau has developed DSM based clustering algorithm by improving
Fernandez’s algorithm. The characteristics of Thebeau algorithm is that it uses random
function for selecting clustering objects. If we set any rule for selecting clustering object,
it may not be able to find optimal value. Thus, by using random object abstract method,
we can benefit to find optimal value rather than approximate optimal value. Meanwhile,
as clustering objects increases, the repetitive calculation time for obtain optimal value
gets longer. The thebeau algorithm process is given in <Fig 7>.

Problem & Solution of existing clustering algorithm. As we discussed, the repetitive test
of clustering algorithm has a time costly disadvantage. Thebeau algorithm also has
same problem that when the clustering object is large, it needs to perform numerous
iterative calculation in order to obtain an optimal solution, although it has a merit of
random object abstract. It means Thebeau algorithm is also not able to know when the
optimal value can be appeared with large clustering object; therefore it has no choice but

to choose minimum value among repetitive test results.

Based on examination of algorithm, our study aims to develop the algorithm that
enables to find an optimal value very fast, even if clustering object is large. The efficiency

difference between Thebeau algorithm and proposed algorithm is shown in <Fig 8>.

~ Local ool
. Cpdmal Vake |

| Czamal Vake |

| Optimal Vake |

w

Fig 8 Improvement target of clustering algorithm

Based on our algorithm improvement goal, the characteristics of our proposed DSM

based clustering algorithm can be summarized as shown in below.
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1. Adopting agglomerative algorithm. The general agglomerative algorithm evaluates
correlation between clusters until it reaches N cluster number; clusters are consolidated to
N. However, for PBS construction problem, it has to consider the correlation of both
inter-cluster and intra-cluster at the same time. Hence, our algorithm uses Thebeau’s
objective function (possible to evaluate correlation score of inter-cluster and intra-cluster
simultaneously) as criteria for allowing procedure for next stage clustering. The objective

function is seen in formulation (2).

Total costm TN, [N_poInt peeq, % Clelze(clustery) + E Qut_point x D8M_size  (2)

2. Selecting cluster for grouping by Bid function. The case of Thebeau algorithm chooses
objects by random function and evaluates with criteria to decide whether generating a new
cluster or adding to existing cluster. However, this random sampling method cannot
provide a good solution when there is large number of objects. Therefore, we use
agglomerative method; investigating correlation score among all clusters to combine the
highest two clusters into one. In this case, all clusters could be merged into large size
cluster. To protect this case, we adopt the criteria value that comes from dividing
correlation score by cluster size. The Bid function we used in this study is presented in

formulation (3).

Eieﬂk and iEGl(DSM(iJ ]} + DSM(]- ]})
G| + |Gyl

Bid(Gy, G,) =

2Gy: Keh clusters objects aggregation
*Giy 2 teh cluster's objects aggregation
* |, | :Object or DSM element

)

3. Each clustering stage is evaluated by objective function. When it reaches at the point that

the value of objective function increases again, stop agglomeration.

-15-

4 0 )




The process of this newly proposed DSM based clustering algorithm can be
described like <Fig 9>. <Fig 10> explains how clustering can be performed like

process shown in <Fig 9> using the example of DSM size 5(target objects-5).

Initial Stage -
Clusier W = N, Best_cost = Total_cost

4
o

Bid Function
Evaluate cluster similarty score

Grouping |
(Two of highest Bid Score clusters) |

l

Best_cost = Evaluate by ohjective funcfion
 Current_cost | (Total_cost = Current_cost)

B

: Current_cost < Best_cosl

Yes

l
LNo

| Best_cost, Cluster Save |

Fig 9 Flowchart of the improved clustering algorithm
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Bid Yalue between Clusters

I Stepd (B,C).(D.EA) Cost=16

Btep2 (8,C),(D,E),A- Cost=34

Stepl (B,CLDEA - Cost=43

B8 CDEA

Fig 10 Example of clustering (dendrogram)

Efficiency Test of improved Clustering algorithm. For efficiency test of improved DSM
based clustering algorithm, same DSM was tested with proposed algorithm and its
clustering result was compared with existing one.

The test method is followed below.

® Target DSM
- DSM size: size 15(30EA), size 30(30EA), size 45(30EA)
- No.of correlation in DSM: size 15(25EA), size 30(50EA), size 45(75EA)

® Number of experiments

For DSM size 15, size 30 and size 45, respectively

- Existing Program: Performing 10 times for each model
- Improved Program: Performing 1 time for each model

® Result comparison
- Existing Program: Minimum value among the results

- Improved Program: Result from experiments

-17 -
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The results from this experiment are shown in <Table 4>.

Considering same DSM, let X4 be a result value of existing algorithm, X2 be a result of
improved algorithm and Pl(efficiency) be a index of improved efficiency. Pl is defined

with below formulation 4.

Pl= (1-3) x 100 (4)

According to this definition, the standard mean and deviation of 30-Pl sample can be
calculated by formulation 5 and 6. The 95% confidence level of PI’'s population mean can

be computed by formulation 7.

o L (5)
n
oy m LRI =FTIE (6)
=1
g g
FT = ty-10028 ;_.% % pipr % Pl -+ Gpeg0028 ﬁ (7)

The population mean of efficiency improvement at the level of confidence 95% for

each size of DSM can be calculated as followed.

® Case of DSM size 15x15;

-3.852 & fip; S 0.538

® Case of DSM size 30%30:

7.395 % fipr 5 11,998

® Case of DSM size 45x45:

18.516 % fip; 5 17165
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As have seen in above result, the case of DSM size 15 which is relatively small shows

similar result value as existing algorithm result, however as DSM size increases to 30

and 45, improved algorithm performs better; ug = 9.6 and 15.3, respectively.

Therefore, we found that as DSM size gets larger, output of improved algorithm can

find better approximate optimal value than existing algorithm.

Conclusion

This study analyzed the problem of existing DSM method and proposed the solution.

The summary of this study is as followed.

1.

2.

Investigated the problem of existing DSM Clustering analysis method and proposed its

solution.

Existing DSM Clustering method usually does not consider external system as an
analysis target. Therefore, there is no guarantee that the PBS result from DSM
clustering is correct. Furthermore, existing method is limited to describing
correlation among components those perform the dynamic functions; not able to
describe correlation among components those perform the static functions. In
order to solve these problems, this study included external system into clustering
analysis target and generated new correlation category that is able to explain the

correlation among components those execute static functions.
Investigated the problem of existing DSM Clustering algorithm and proposed its solution.

Thebeau algorithm has an advantage that when the number of clustering is small,
it is possible to obtain the optimal value (not approximate optimal) using random
function. However, when it has a large number of clustering, it has no choice but
to choose minimum value within limited iterative calculation as its iterative
calculation number increases. Thus, Thebeau algorithm draws approximate
optimal value for the case of large number of clustering, which means the quality

of solution is not good. To solve this problem, we propose ‘agglomerative
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[1]

[2]

[3]

[4]

[5]

[6]

clustering algorithm’ and bid function in order to choose clustering object so as to
find a good solution fast.

Although this study solved the problem of existing DSM based Clustering method
and contributed to efficiency and maturity of method, it still needs to study on
improvement of clustering algorithm. The proposed clustering algorithm in this
study only can choose one when there is tie correlation scores. Hence, it results
approximate optimal value not optimal value. Therefore, if we can develop the
criteria to classify the tie score case, we will be able to achieve the good quality

solution.
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