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Abstract.  The handling of complexity poses an important challenge and a success factor for 
product design. A considerable percentage of complexity results from dependencies between 
system elements – as adaptations to single system elements can cause far-reaching consequences. 
The Structural Complexity Management (SCM) approach provides a five-step procedure that 
supports users in the identification, acquisition, analysis and optimization of system dependencies. 
The approach covers the handling of multiple domains (e.g. components, functions and 
people).Additionally the application of the SCM approach requires intensive support by 
information visualization, e.g. matrix and graph representations. However, one single technique 
does not satisfy all demands. Each phase of the SCM approach possesses individual requirements 
on the visual support. Whereas many specific techniques exist for visualizing systems and their 
dependencies (e.g. mind map or DSM), a suitable combination that supports the entire SCM 
approach is not available. For this reason, practical applications of the SCM approach are only 
restricted to small systems so far. In this contribution, we classify available techniques of 
information visualization and match them with the requirements of the SCM approach. Then we 
assemble a comprehensive model of visualization techniques which will provide the 
implementation basis for an appropriate software support. 

Introduction 

The problem.  The management of complex technical products poses an important challenge in 
engineering. Among other criteria, in the first instance the amount of dependencies determines a 
system’s complexity and therefore several methodical approaches address the handling of 
dependencies. These approaches apply possibilities of information visualization in order to 
provide an intuitive system understanding and to allow user interaction. 
The Structural Complexity Management (SCM) approach (Lindemann et al., 2008) supports the 
handling of multiple-domain systems, i.e. systems containing several aspects (e.g. components, 
functions, signals) and dependency types (e.g. flows of forces, change impact, information flow). 
This approach covers the entire process from the initial system definition until the implementation 
of improved system management and design. The single steps need to be supported by techniques 
of information visualization (e.g. the DSM); however, a comprehensive model for maintaining the 
requirements on visualization, mediation, and analysis of the approach does not exist. For this 
reason, practical applications of the SCM approach are restricted to small systems so far. 

The objective.  We exemplify suitable forms of information visualization and match them with 
the requirements of the SCM approach. This results in an assembly of visualization techniques and 



  

their required interfaces that support the demonstration of all process steps. This assembly 
represents the basis for a tool implementation that allows the practical application of the SCM 
approach. In this way the management of complex design tasks can be improved significantly. 

Complexity management as a multiple-domain task.  Concerning modern automobiles, a 
multitude of technical dependencies emerged due to increased integration of mechatronical 
components. Consequently, not only product complexity but also process complexity increased, to 
some extent because mechatronics implied an intense division of labor and an increased need for 
development coordination. Additionally, the increase of product functionalities ended up in the 
necessity of intensifying cooperation of internal enterprise departments and external suppliers 
(Kusiak, 1999). As a result organizational and communication flows also become more complex. 
Considering only the isolated aspects of complexity (i.e. single-domain systems) is often 
misleading. Actions derived for improving the complexity of specific system extractions can 
contradict requirements that have not been considered. Consequently, complexity management 
often means to cope with several system aspects simultaneously. 

Consideration of system structures.  Every system containing of at least two or more parts that 
interact with each other possesses an underlying structure (Boardman & Sauser, 2006). Know-
ledge about this structure allows conclusions about the system itself and results in improved 
understanding. In technically demanding products, multiple dependencies exist between integra-
ted components and therefore considerably complicate the design of a specific component. The 
determination of consequences that can result from single adaptations requires information about 
the internal product dependencies. Knowledge about this structure of connectivity, for example, 
permits developers to identify required actions that are related to a specific customer request. 

Visualization of complex system dependencies 
Many approaches allow representing graphically and interacting with dependencies in complex 
systems. For example, several hundred projects are documented at visualcomplexity 
(http://www.visual complexity.com). These projects refer to a large variety of 
application fields and mainly apply graph representations. Some authors also mention the various 
fields of matrix application for handling complex system dependencies (e.g. Yassine, 2004; 
Browning, 2001; Danilovic & Browning, 2004). The gestalt laws depict the fundamentals of these 
graph and matrix representations (Ware, 2004). In the following, we provide a general 
classification of matrix- and graph-based approaches that constitute the basic set of methods 
available for supporting the application of the SCM approach. 

Matrix-based approaches 

Matrix-based visualizations for representing system dependencies can be classified by the quantity 
of the types of elements involved (Figure 1), whereas some approaches focus on the representation 
(and analysis) in between elements of the same type (e.g., dependencies within product 
components), others consider linkages between two types (e.g., dependencies between customer 
requirements and product functions). In the first approach, the related matrices can be defined as 
intra-domain. The label “domain” describes the type of element, e.g. “product components”. In the 
second approach, matrices are referred to as inter-domain matrices. More comprehensive 
approaches take into account even more domains by the sequential combination of intra- and 
inter-domain matrices. Finally, the Multiple-Domain Matrices (MDMs) apply computations 
between combined matrices and can provide specific views on a modeled system. 
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Figure 1. Classification of matrix-based models (Lindemann et al., 2008) 
 

Intra-domain matrices.  A popular method using intra-domain matrices is the Dependency 
Structure Matrix (DSM). According to (Browning, 2001) a DSM is a matrix with an equal number 
of rows and columns. It provides systematic mapping of elements (all belonging to one domain 
only) and their relationships. The element names are placed down the side of the matrix as row 
headings and across the top as column headings in the same order. The use of DSMs has been 
extended to many types of system and design analysis, e.g., project planning, project management, 
and organization design (Brady, 2002). In addition to the DSM, many further applications of 
intra-domain matrices exist in product design, e.g., compatibility matrices. 

Inter-domain matrices link elements of two different domains and are widely used in design 
methodology, e.g. the “Cause and Effect Matrix” (Allen, 2006). In 2001, Danilovic & Börjesson 
settles on the term “Domain Mapping Matrices” (DMMs) for an enhancement of the DSM 
methodology to inter-domain matrices. The authors presented studies on linkages between product 
architecture and organization as well as between systems and organization. 

Combined intra- and inter-domain matrices  represent a combinatorial enhancement of the 
matrix types mentioned before. For example, the House of Quality (integral part of the method of 
Quality Function Deployment) combines inter- and intra-domain matrices to capture several 
system aspects (domains) simultaneously (Akao, 1992). The basic form of the House of Quality 
contains of one intra-domain matrix and three inter-domain matrices linking customer 
requirements, technical requirements, criteria, and technical evaluation together. 

Multiple-Domain Matrices  (MDMs) differ from the combined application of intra- and 
inter-domain matrices by computations within the considered matrices. In 2008, Lindemann et al. 
provided a detailed definition of the configuration of a MDM. Figure 2 shows the layout of a 
MDM together with an associated graph representation. The MDM consists of intra- and 
inter-domain matrices that allow the modeling of dependencies within and between elements 
belonging to several domains. In addition, specific system views can be derived by computational 
analysis of indirect dependencies in the MDM (see also Figure 8 and related explications). 
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Figure 2. Multiple-Domain Matrix and associated graph representation 

 

Graph-based approaches 

Generally, graph theory and graph drawings must be clearly separated. Graph theory represents the 
mathematics of networks, i.e. system elements and their connections. Thus, graph theory provides 
the fundamentals for many methods applied in product design, e.g., project scheduling by the 
critical path method (Gross & Yellen, 2006). Systems can be characterized by their implied 
substructures (trees, cycles, etc.) or their structural attributes like connectivity, coloring, or 
planarity of considered graphs, just to mention a few, formed by elements and dependencies 
(Gross & Yellen, 2006; Bollobás, 1990). Graph drawings, however, mean the depiction of 
networks mostly by nodes and edges. Thus, graph drawings (as well as matrices) represent a 
possibility to depict the mathematical formulations of graph theory (Gross & Yellen, 2006). 

Simple graphs and digraphs.  Simple graphs can depict a general linking of elements; digraphs 
can even model information about a flow direction and not merely the connectivity of two 
elements. Due to their generic principle of information representation digraphs can be found in 
many applications, e.g. in modeling process flows or cause-and-effect chains. 

Graphs applying ordering schemes  provide enhanced possibilities of intuitive representation 
and interaction with complex systems. An ordering scheme helps users to identify relevant 
elements, as attributes of elements directly relate to their position in a graph drawing. For example, 
the time attribute can be applied for aligning process tasks along a time line. Even if a system 
contains many elements, their attribute-based classification makes them easy to detect in the 
visualization. Another common ordering scheme represents the degree of system decomposition 
of elements. Often, this scheme gets applied to the depiction of a bill of material and results in a 
hierarchical alignment of system components (product tree). 

Force-directed graphs  apply an ordering scheme, which does not base on attributes of elements. 
In fact, force-directed graphs use the dependencies (edges) of a graph for creating the positioning 
of all system elements in the visual alignment. According to Di Battista et al., 1999 “force directed 
algorithms are intuitive methods for creating straight-line drawings of undirected graphs. They are 
quite popular because their basic versions are easy to understand”. The principle of force-directed 
graphs can be seen in Figure 3. Depiction a) “shows a graph where vertices have been replaced 



 

  

with electrically charged particles that repel each other and edges have been replaced with springs 
that connect the particles. An equilibrium configuration, where the sum of the forces on each 
particle is zero, is illustrated in [depiction b) of Figure 3]. This configuration can be interpreted as 
a straight-line drawing of the graph, as in [depiction c) of Figure 3]” (Di Battista et al., 1999). 
 

 
Figure 3. Compilation of a force-directed graph (according to Di Battista et al., 1999) 

 

Multiple-domain graphs.  Several applications require the simultaneous depiction of elements 
belonging to different domains (http://www.visualcomplexity.com). All kinds of 
graph drawings can be used for such visualizations. However, clarity and possibilities of user 
interaction decrease with additionally integrated domains. Figure 4 shows a digraph (without 
ordering scheme) containing elements belonging to four different domains. 
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Figure 4. Multiple-domain graph 

 
An attribute-based ordering scheme could be applied to the visualization, if all elements would 
share a common attribute. However, this can hardly be found in typical systems. In Figure 4, for 
example, the time attribute belongs to elements of the process domain but not to elements of the 



  

people domain. Generally, two ordering schemes (e.g. a horizontal and vertical axis) could be 
applied to a multiple-domain graph simultaneously. But this can result in complicated and 
equivocal element positions and decreases possibilities of intuitive understanding. The 
force-directed ordering scheme could also be applied to multiple-domain graphs; but dependencies 
need to possess identical meaning. This is not the case in typical multiple-domain graphs. 

Procedure of the Structural Complexity Management 
Approach 

The Structural Complexity Management (SCM) approach supports the handling of 
multiple-domain systems (Lindemann et al., 2008) containing numerous dependencies between 
system elements. The approach contains five steps (Figure 5), which will be introduced in the 
following. The suitable information visualization represents a key factor for the successful 
application of the approach. For this reason, we try to identify the appropriate visualization 
techniques required to fulfill the specific tasks of each step of the approach. Next, these techniques 
are combined in a comprehensive model that provides the basis for a software implementation. 
Introduction of the SCM approach.  Here, the comprehensive approach will be shortly 
introduced. A detailed description and application scenarios can be taken from (Lindemann et al., 
2008). The initial situation can be a handling problem or a design problem, both resulting from a 
system’s complexity. A handling problem can occur if a product or a development process already 
exists, but the demand for adaptation generates problems due to unknown or undesired 
side-effects. A specific adaptation request can seem not to be complex, but system dependencies 
may lead to numerous subsequent adaptations (change propagation). This can result in time and 
resource shortages when attempting to accommodate the desired adaptation. A design problem can 
occur in the new development of a system, e.g., a product. If product development includes a 
pro-active structure development, design improvements can be realized; i.e., less iteration occurs 
in comparison to passively emerged structures and change propagations can be locally restricted. 
During the initial system definition the general extent of the considered system has to be 
determined. That includes the identification of required domains, the determination of system 
elements and the dependency types that link between the domains. 
In the step of information acquisition direct dependencies between system elements are identified 
and documented in the system model. Such dependencies can, e.g., be acquired from data bases, 
modeling tools applied in the design process, or by interviews with system experts. The main 
challenge of information acquisition is to guarantee a high data quality. 
If the direct dependencies between system elements are on hand, the deduction of dependencies 
allows deriving specific subsystems. These subsystems represent focused views on specific 
system aspects. The deduction of dependencies provides intra-domain networks that allow 
subsequent system analysis and interpretation. An example can clarify this: In the step of informa-
tion acquisition the direct dependencies between product components have been acquired (change 
propagation) as well as the dependencies between product components and designers (respon-
sibility of designers for components). Now, the application of the deduction of dependencies can 
provide a network between product designers, who are indirectly linked, because of their work on 
related hardware components. In fact, the designers are linked indirectly in the system and the 
resulting network represents a specific view on organizational aspects in the product design. 
During the step of structure analysis the system’s characteristics are identified by applying 
methods of the algorithmic graph theory (Kusiak, 1999). Significant structural constellations, e.g. 



 

  

feedback loops or clusters can be detected, which are implied in the system structure.  
In the final step of product design application acquired knowledge about significant constellations 
is used to improve the system design or the system handling. A structure manual, for example, can 
be created providing a better understanding and awareness of the system. Even better such a 
structure manual serves as a guideline for the systematic handling of system complexity. 
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Figure 5. Structural Complexity Management Approach (Lindemann et al., 2008) 

 

System definition.  In this phase relevant domains and dependency types are defined. The optimal 
system definition comprises the minimum of domains and dependency types required for solving 
the initial problem (definition of the system borders). The identification of relevant domains starts 
with collecting system elements, which are classified into groups afterwards. This task can be 
supported by using mind maps (Buzan, 1996). In a hierarchically aligned collection of elements, 
the elements on the first level represent the domains for subsequent consideration (Figure 6a). 
With the domains on hand, their mutual connectivity has to be modeled. Typically, not all domains 
are linked directly. If the dependencies between domains are known, efforts for the following 
information acquisition can be kept at a minimum. However, the identification of dependencies 
between domains requires another representation than the collection of domains, because 
cross-linking in mind maps becomes easily confusing. Mind maps are meant for the creation of 
hierarchical links only. Dependency types between domains can be depicted in a digraph without 
an ordering scheme (Figure 6b); but this representation can become difficult to handle, if the 
system contains many domains (because of confusing intersections). In this case an intra-domain 



  

matrix can be applied (Figure 6c), where the domains are noted as column and row heads and 
dependency types between domains can be noted within the matrix fields. If users investigate all 
matrix fields sequentially (row by row or column by column) all possible links between domains 
should be considered. 
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Figure 6. System definition: Visualizing domains and their dependency types 

 

Information acquisition.  In the first step the filled matrix cells from Figure 6c have to be divided 
into matrix subsets. That means that instead of the domain names the implied system elements are 
noted in the matrix columns and row heads. Thus, cells on the matrix diagonal become expanded 
into intra-domain matrices, whereas all other cells become expanded into inter-domain matrices. 
In the following step dependencies between system elements have to be acquired and documented 
in the matrix cells. At this point systematic procedure and appropriate information visualization is 
necessary to achieve completeness and high quality of the acquired network. If dependencies 
between system elements are captured by drawing connectors in a digraph, the illustration quickly 
becomes complex (left side in Figure 7). In this case it is difficult to see, if all possible 
dependencies have been considered not to forget that elements can be difficult to find as soon as 
networks become larger.  
The matrix at the right side of Figure 7 contains the same information as the digraph. For the 
acquisition of dependencies the matrix can be processed row by row (or column by column). This 
procedure assures that all element pairings are considered for possible dependencies. 
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Figure 7. Suitability of graph and matrix for the systematic information acquisition 



 

  

Figure 7 clarifies information acquisition for an intra-domain network. Concerning inter-domain 
networks, an application of a matrix representation gets even more favorable for information 
acquisition: In a digraph the different element types would result in a more complicated depiction 
as confusing intersections of dependencies become unavoidable (the total number of considered 
system elements gets typically larger than in inter-domain networks). In contrary, the matrix 
depiction and the associated process of information acquisition remains still the same as it was 
applied to the inter-domain matrices (but each axis contains different system elements). 

Deduction of dependencies.  The deduction of dependencies represents a mathematical procedure 
(Lindemann et al., 2008). However, visual support of this process step can facilitate the 
determination of the target domain and required input data (information sources). Figure 8 
clarifies the need for visual support. The graph represents an extraction of a dependency network 
and contains four system elements belonging to two different domains. The square domain can e.g. 
represent people, whereas the triangular domain represents product components. The thin arrows 
indicate the direct dependencies acquired for this system. Thus, geometric dependencies between 
product components and the responsibility of people for specific components have been identified. 
Now, the deduction of dependencies allows determining indirect links between elements of one 
domain by using dependency chains passing by elements of a second domain. In Figure 8 the thick 
arrow indicates such an indirect link resulting from the three direct ones (thin arrows). For the 
exemplary use case, this deduced dependency indicates that person d impacts person a by 
executing a design change to component 2 (which propagates the change to component 1). The 
deduction of such component-based dependencies between designers is a good example, what a 
great help it can be to manage development processes. 
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Figure 8. Deduction of dependencies – representation in graph and matrix 
 
Now the indirect connection between both square elements can be easily derived visually in the 
digraph by following the direct links. However, in complex networks the visual detection of 
indirect dependencies is mostly impossible. This is why an application of an intra-domain matrix 
represents a useful alternative for supporting the deduction of dependencies in complex networks. 
Hereby, the same matrix gets applied as introduced in the step of system definition (Figure 6c). 
The system domains are implemented as elements in the row heads and column heads of the 
matrix. The dependency types are documented in the matrix cells. Figure 8 shows the matrix for 
the two domains mentioned above. If users want to determine dependencies between designers 
(square domain), these dependencies are modeled in the lower right cell of the matrix (shaded in 
grey). In other words, the objective of the deduction of dependencies is the network of system 
elements represented by the lower right matrix cell. The information sources required for the 
network determination can also be identified in the matrix cells: The upper left and the lower left 
matrix cell represent the networks of component links and the links between people and com-



  

ponents. The example shows that the target domain and the information sources for the deduction 
of dependencies can be selected from an intra-domain matrix that represents the system domains. 
Figure 9 depicts the visual matrix support for the deduction of dependencies, as it could be realized 
in a software implementation. In our example the modeled system contains three domains 
(components, people and documents). Four types of dependencies have been modeled, each 
linking between two domains (shown by the dependency meaning written in the matrix cells). 
Based on this information, five kinds of indirect dependencies can be computed, which result in 
indirect links between people (indicated by the arrows). At the right side of Figure 9, all required 
information to compute one specific type of indirect dependencies has been specified: the matrix 
field in dark grey indicates the target domain (people). The two matrix fields shaded in light grey 
represent the associated information sources. If the matrix fields are implemented as buttons in a 
user interface, users can easily determine required indirect dependencies. 
 

Compo-

nents
People Documents

Compo-

nents
Change

Processed 

by

People Generate

Docu-

ments

Required 

by

1

5

2

3

4

Compo-

nents
People Documents

Compo-

nents
Change

Processed 

by

People Generate

Docu-

ments

Required 

by

 
Figure 9. Selecting objectives and information sources for the deduction of dependencies 
 

Structure analysis.  Analysis methods can be applied to intra-domain networks (resulting from 
the deduction of dependencies or directly from information acquisition). Analysis methods help to 
detect structural characterizations, which can be interpreted later on. Therefore DSM-related re-
search provides appropriate methods (Browning, 2001). Moreover several authors provide des-
criptions on analysis methods based on graph theory (e.g. Bollobás, 1990; Melnikov et al., 1994). 
For the application within the SCM approach, the analysis methods can be classified into two 
groups: 
The first group contains analyses that provide direct benefit from the visual examination of a 
system or by interacting with this visualization. Figure 10, for example, shows the structure of a 
change propagation based on components as seen at the components of a ballpoint pen. Here, a 
(non-directional) force-directed graph gets applied. The dependencies between elements are repre-
sented in the matrix as bi-directional dependencies, symmetrically aligned to the matrix diagonal 
(e.g., the “Tube” links to the “Distance bush” and the “Distance bush” links to the “Tube”). Even if 
both representations contain the same information, the implied structure is easier to understand by 
the force-directed graph: The “Tube” represents the core element, as almost all other elements are 
linked to this. In the graph representation, this element is located in the center, which makes its 
structural relevance intuitive. Two completely interlinked clusters exist in the structure 
(“Tube”–“Nib guide”–“Ink store”, “Tube”–“Press button”–“Ink store”). In the graph, both clusters 
intensified by the fact that they both overlap in the two elements “Tube” and “Ink store” can be 



 

  

easily detected. The matrix at the left side contains the same information as the graph; however, 
users must be familiar with this representation form for extracting the relevant content. 
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Figure 10. Visual structure analysis applying matrix and graph 

 
Whereas in Figure 10 the graph representation seems to be more appropriate, Figure 11 shows an 
analysis that can be visually supported by matrix visualization. The dependencies within a system 
comprising eleven elements are shown. Even with this minimal amount of elements, it seems 
impossible to discover any structural characteristics. The matrix in the middle of Figure 11 depicts 
exactly the same system, but elements are aligned differently. In this depiction the underlying 
system structure can be seen clearly: two complete clusters (all elements are mutually linked) and 
a completely interlinked hierarchy (formed by four elements). The identical structure is shown as a 
force-directed graph at the right side of Figure 11 making it easy to identify the system structure as 
well. But even though it is easy to imagine that graph interpretation can become more difficult the 
more elements and dependencies are included in the structure, so the detection of the hierarchy 
already requires some experience in interpreting graphs. In comparison, a correctly arranged 
matrix would show shapes of clusters and hierarchies independent from the amount of implied 
elements. The example shows that an appropriate matrix alignment can permit the identification of 
implied structural characteristics. Several authors provide step-by-step instructions that allow 
manual realignment of matrices (e.g., Kusiak, 1999). With these the visually supported interaction 
with the structure permits the identification of clusters and hierarchies. However, matrices are less 
suitable for the representation of multiple structural attributes, if these contain identical elements 
or dependencies. What is even worse matrix representations can hardly be used for the 
representation of feedback loops (Lindemann et al., 2008). 
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Figure 11. Visually supported interaction with a structure in matrix depiction 



  

The second group of structure analyses uses mathematical computations and applies visualization 
techniques for mediating the results to the users. Generally, intra-domain matrices are appropriate 
for representing information about clusters (Hartigan, 1975). But clustering has also been applied 
in inter-domain matrices (Danilovic & Sigemyr, 2003). Several other analysis results, e.g. start and 
end nodes, articulation nodes and bridge edges, can be depicted in matrices as well; however graph 
representations, especially force-directed graphs often provide better understanding for users 
(Lindemann et al., 2008). An overview of possible analyses and their representation can e.g. be 
taken from (Gross & Yellen, 2006). Concerning the application of multiple-domain graphs, no 
implementations can be found in literature that allow intuitive user comprehension – especially if 
large quantities of elements and dependencies have to be visualized. 

Product design application  is closely related to the structure analysis discussed before. Often 
both steps can not be clearly separated in the process of the SCM approach. It is more likely that 
both steps are mutually linked in intensive iterations (Lindemann et al., 2008). Therefore, the same 
visualization techniques are appropriate for application in both steps. A problem can appear if 
users are not used to interacting with networks. In this case they tend to prefer graph represent-
tations. Even if matrices are well established in design processes (due to a wide use of spreadsheet 
software), the reading and interpretation of e.g. the DSM often poses an insuperable barrier to 
engineers. This explains why DSM-related research is well documented since almost 40 years 
(Yassine, 2004), but practical applications can be rarely seen (Danilovic & Browning, 2004). In 
contrast, even everyday problems with complex networks (e.g. railway networks or acquaintance 
networks) are represented by graph drawings (http://www.visualcomplexity.com). 

Appropriate model of information visualization 
Based on the requirements and possibilities of visual representations a model for the visual support 
of the SCM approach has been assembled. As it has been shown, one specific system 
representation can not fulfill the requirements of all five process steps. Therefore, a combination of 
visualization techniques has been designed and transferred informational content has been 
specified. The mapping of visualization techniques to the process steps and the identification of 
required interfaces between them poses the basis for the implementation of a software-based 
support of the SCM approach. 
Figure 12 depicts the model of information visualization for the SCM approach. Three 
visualization techniques are listed for the initial phase of the system definition. The mind map gets 
adopted for modeling the system domains and included elements and poses the basis for the 
subsequent application of the digraph or the intra-domain matrix. Generally, the user can choose 
between the application of the digraph and the intra-domain matrix, but when there is an 
interaction with large systems containing a multitude of domains the intra-domain matrix should 
be preferred. 
Information about the linked domains has to be exchanged between the system definition and the 
step of information acquisition. Now, the already described dependencies between domains have 
to be detailed into the included system elements with their specific dependencies. For the 
information acquisition intra- and inter-domain matrices can be applied, as they allow systematic 
processing of all relevant system dependencies. 
Filled matrices, i.e. the information about dependencies between system elements result from the 
phase of information acquisition. This information gets applied in the step of the deduction of 
dependencies for computing specific system views. An intra-domain matrix visually supports 
users in selecting the necessary system parameters for computation (target domain and associated 



 

  

information sources). This matrix matches the intra-domain matrix applied in the system 
definition. 
Derived intra-domain subsets of the system structure result from the deduction of dependencies. 
These are passed on to the following structure analysis. During this step, several visualization 
techniques can be helpful. Their suitability depends on the specific analysis that has to be 
executed. Therefore, intra- and inter-domain matrices as well as force-directed graphs can be 
useful instruments for visualization and system interaction by users. 
Generally, lists, diagrams and basic digraphs can also be applied for the structure analysis; 
however, these visualization techniques represent aggregated system views. That means that 
iterative analyses can become difficult with these visualizations, as analysis results do probably 
not allow to trace back to the original information about system elements and their dependencies. 
The final step of product design application is closely related to the structure analysis. Due to 
iterative application, both steps can not be clearly separated and apply the same visualization 
forms consequently. 
As Figure 12 shows, several visualization techniques are required for an effective support of the 
SCM approach. For this reason, available tools that provide single visualizations do not meet all 
requirements, implying that a combined application of several tools would be accompanied by 
interface problems. Therefore, a successful support of the SCM approach asks for a tool that 
implements the visualization model of Figure 12 and allows switching between the visualizations. 
This requirement goes along with the need for a consistent data model that enables to equally 
transfer adaptations, which are made in one visualization form to other forms. A consistent data 
model would also allow to step back to previous phases in the SCM approach. If the analysis 
results, for example, would not fully meet the expectations, it is possible to add an additional 
domain in the step of system definition – and pass through the procedure again. 
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Figure 12. Information visualization for the Structural Complexity Management approach 



  

Conclusion and outlook 
Many visualization approaches are available for the purpose of managing complex networks. They 
are all suitable for the application on specific problem situations but do not support an entire 
process of problem solving. The Structural Complexity Management (SCM) approach represents a 
comprehensive approach for the handling of multiple-domain systems containing complex 
dependency networks. Whereas the approach describes the whole procedure from initial system 
definition until the final application of improvements of product design, an accompanying 
description of visualization techniques and their useful combination has not been provided yet. For 
this reason, the practical application of the SCM approach has been limited to the handling of 
small systems, so far. Several tools apply information visualization that is qualified for supporting 
specific phases and tasks of the procedure. But information exchange between those tools is 
difficult to implement and complicates practical use. 
Due to these limits in practical application we identified suitable visualization techniques and 
matched them with the requirements of the SCM approach. Based on this procedure we created a 
model of combined visualization techniques and described the required information exchange 
between them. The ongoing implementation of this visualization model will help to increase the 
applicability of the SCM approach to industrial use cases of complexity management significantly. 
The software tool LOOMEO (http://www.teseon.com) is used as a basis for the 
implementation of the elaborated information visualization model. Until today, we have 
established the combined application of intra-domain matrices and force-directed graphs 
(Figure 13). This implementation already allows us to support large parts of the SCM approach. In 
the future, the visualization support will be consequently enhanced until the entire process can be 
supported effectively. 
 

 
Figure 13. Simultaneous interaction in inter-domain matrices and force-directed graphs 
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