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Abstract. Engineering process efficiency is the target of any systems engineering 
organisation. In this paper we review initial experience from applying the Contracts based 
systems engineering method developed by the SPEEDS project. The method is outlined along 
with experience gathered from pilot projects performed at SAAB Aerosystems. Outlines for 
adapting the method to mainstream tools as well as future adoption activities are also 
presented. 

Introduction 
Divide and conquer is the established approach for mastering complexity in development of 
systems. Of course, other terms are preferred, e.g., systems engineering, but the basic premise 
remains the same: We seek to divide intangible problems in order localise smaller tangible 
ones that enable future integration and realisation of a working solution. Multiple strategies 
are applied, e.g., partitioning according to functional or technology domains.  

Formulation of proper requirements and architectural design is key factors for successful 
implementation, and literature on these topics is abundant. Multiple development processes 
have been proposed and accepted by industry, e.g., waterfall, spiral, or the iterative process. 
Over the last half century they have also been tuned to properly address the challenges of 
embedding software in systems. Space is not sufficient here to capture software’s role in 
system development and the associated challenges, see (Doyle and Pennotti 2008), (Wenzel 
and Bornemann 2006), and (Sheard 2004) for an overview. Concurrent Engineering practises, 
i.e., the initiation of subsystem development prior to completion of system level development, 
has also be applied to systems engineering process and is now an accepted part of the systems 
engineering toolbox. Multiple papers on concurrent systems engineering has been published 
at INCOSE events, e.g., (Rhodes and Smith 1992) and (Wade 1995). 

The traditional approach in Systems engineering is to refine requirements such that they can 
be allocated to a single system component or component interface and pass down the 
responsibility for further development to the component level engineering team. With this 
approach, feedback in the form of integration and verification results to system level 
engineers is often late and far from satisfactory. One reason for this is, of course, the 
complexity of component interfaces and also the fact that the knowledge of the integrated 
system is limited at the time when requirements are allocated. Integration occurs usually late 
in the process. Early, virtual (in model based tools), integration activities are seldom 
performed. 
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We believe that one contributing factor to problems in integration is the prevailing practise in 
industry to focus exclusively on textual requirement statements. Systems engineers have been 
taught to refine and distribute requirements among the components, interfaces and behaviour 
elements that shall fulfil the needs while no or little regard is placed on the assumptions made 
on the components and interfaces in the design process.  

The importance of documenting assumptions lies in the fact that for any complex system the 
sum of requirement statements on a component will not be exhaustive – in industrial reality 
the requirements stated on a component will only specify a subset of the complete 
functionality, behaviour or other properties of a component. At first such statements may 
appear absurd – intuitively completeness is a matter of adding requirement statements until 
the characteristics of a product are “completely” defined. But in reality the lack of system 
knowledge at the time of requirement formulation makes attempts to achieve completeness 
impractical – even counter productive as many of the characteristics captured when striving 
towards completeness are bound to be either self-evident or be unnecessary constraints for the 
designing engineers. Additionally, overly detailed requirements may add unreasonable costs 
in implementation and verification. 

Requirements engineering literature is adamant on the importance on requirements validation, 
i.e., ensuring that requirements are well formed, sound and affordable, but we have yet to see 
literature placing equal importance on assumptions validation – with the notable exception of 
the ARP-4754 standard (SAE 1996). This focus on requirements, at the cost of assumptions, 
is also evident in our standard design documentation: In our templates we have sections for 
capturing requirements of different kinds, but there is at most a single section for capturing 
the assumptions made. Likewise, in SysML we have a dedicated requirement artefact, but no 
corresponding one for assumptions (although there is a rationale item defined in the 
language).  

In the rest of this paper we outline the approach for adapting the design by contract method 
popularised in the Eiffel language to systems engineering and to SysML as performed within 
the EU funded SPEEDS (SPEEDS 2008) project
†. Initial experience from applying the SPEEDS methodology on a fictitious transportation 
system is presented along with experience gained on SAAB internal projects.  

Design by Contract 
The term “design by contract” was introduced with the Eiffel (ISO 25436 2006) programming 
language and associated development method. The underlying idea is to create a development 
context similar to that of well formed business agreements. For each component formal 
assertions on software block pre-conditions and post-conditions are developed prior to or in 
parallel with development of the source code.  

Any pre-condition captured is an assumption on the data provided to the block, i.e., the block 
itself does not exercise any control over data provided upon the entry of the block. Similarly, 
a post-condition is a promise in that it guarantees properties of the data upon completion of 
execution of the block. Contracts are formed by the combination of promises on a code block 
with assumptions on the following code block. The contract holds if the assumptions made for 
a block are compatible with promises made by interfacing code blocks. Contracts in the Eiffel 
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language provides the means for efficient code inspection, for on-line monitoring of software 
execution, for conformance with contracts, and for formal analysis. 

Consequently, the Eiffel language provides valuable tools to engineer reliable software. It 
must however be noted that despite its technical merits and it being an ISO standard it is our 
perception that Eiffel is not widely used in industrial software development projects.  

SPEEDS 
SPEEDS is a pan European project with the objective to define a new generation of end-to-
end methodologies, processes and supporting tools for embedded system design. The 
SPEEDS project aims at significant improvements of the competitiveness of industry in the 
sector of embedded systems by means of enhancing model-based systems engineering with 

• semantics-based modelling to 
o support the design of complex embedded systems using heterogeneous sub-

system models, and  
o enable sound integration of existing and new modelling and analysis tools. 

• novel formal analysis tools and techniques that will allow exploring architectural 
implementation alternatives and “first-time-right” design using the “design-by-
contract” paradigm. 

The problems addressed by SPEEDS are:  
• How to reach a system design solution in a multi-dimensional, concurrent, and multi-

disciplinary development environment. 
• How to meet multi-dimensional constraints (e.g. safety, reliability, maintainability, 

resource usage, cost and time). 
• How to overcome concurrent, multi-disciplinary, and cross-organizational 

environment and ensure robust and flexible design, including manufacturers/suppliers 
cooperation. 

• How to provide cost-efficient mapping of applications and product variants onto 
embedded platforms.  

• How to manage risk in the design caused by missed/unstable requirements and design 
uncertainties. 

In this paper we focus on the aspects of SPEEDS associated with the design-by-contract 
paradigm. The theoretical aspects of SPEEDS are reported in (Engel et al, 2008, Josko et al, 
2008). Focus herein is on the end-user oriented aspects of the method. This said, some brief 
overview of the underlying technology is called for to put the end user experience into 
context.  

Contracts in Systems Engineering 
The SPEEDS methodology is based on a model based engineering approach, in particular 
component based modelling. An information model, HRC (Heterogeneous Rich Component), 
has been developed providing a semantically well founded base for the method. The HRC 
model is extensive and defined to support representation of component models originating 
from languages and tools such as SysML, Matlab/Simulink and SCADE. The semantics is 
defined such that any of these tools could be used as frond-end modelling editor for creating 
HRC compliant models. The core notion in HRC is that of the component. HRC supports the 
definition of contracts captured between components in a manner similar to that of the Eiffel 
method. A component in HRC may have any number of interfaces – each conveying a 
functional or non-functional property of the component. Interfaces may be flow- or service 



oriented similar to the ports in SysML and they carry information with an associated type. In 
this aspect HRC is very much similar to any block oriented specification method, e.g., SysML 
Internal Block Diagram or Simulink block models. Any number of assertions (assumptions or 
promises) may be associated with an interface, where: 

• An assumption is a statement on the expected properties (physical or logical 
properties, signals) fed to the interface through the environment, i.e., properties that 
are not controlled by the component. In flow oriented design environments such as 
SysML Internal Block Diagrams, assumptions are captured on input ports. 

• A promise is a statement of the properties guaranteed for a component interface – 
given that assumptions made on other component interfaces are fulfilled by the 
environment. In flow oriented design environments such as SysML Internal Block 
Diagrams promises are captured on output ports. 

When looked upon in isolation, an HRC component and associated assumptions and promises can be 
defined as presented in  

Figure 1. The example is also available in Andersson (2009).  
 

System component

Assumption:
Signal latency
from sensor 
reading is at 
most 2 ms

Promise:
Input-output 
signal latency is 
at most 3 ms

Promise:
16-bit 
resolution, 
accurancy +- 3 
lsb

 
 

Figure 1: Component model with Assumption - Promises 
 

In  

Figure 1 interfaces are presented as flow interfaces, however interfaces may be created for 
any system property that shall be set in the engineering process, e.g., component weight, size 
or cost.  

Note: In this paper we present assertions in plain English. There is also a formal language, 
CSL (Contract Specification Language), developed by the SPEEDS project which allow for 
formal definition of assertions, which in turn enables formal analysis of contracts. This aspect 
of SPEEDS is discussed in (Engel et al, 2008), but has not yet been applied by SAAB and 
consequently not further touched upon in this paper. 

Contracts: Combining Assumptions and promises 
Assumptions and promises from different components are linked to form contracts indicating that the 

assumed characteristics of an input interface of a component are intended to be satisfied by the output of 
the component providing the information.  

Figure 2 illustrates contracts captured between interfaces of two components K1 and K2. The 
semantics is such that for Contract C1 the assumption A21 must be satisfied by P11. As stated 



above, contract satisfaction could be established through formal analysis (provided that K1 
and K2 are unambiguously specified) or through manual review. 

The use of the term Contract to denote a modelling concept deep within a modelling 
methodology is not trouble free. Our intuitive interpretation of the term contract is that it is a 
business level agreement which is far from the ‘micro’ style contracts introduced herein. Still 
we believe the term contract is appropriate as it is our objective to create a clear view of 
obligations between development teams. Appropriate or not it takes a short extra effort to 
communicate the semantics of the word contract. 

K1

A11

P11

P12

A12

K2

A21

P21

C1

A21

C2  
 

Figure 2: Assumptions and promises combined to contracts 
 
Contracts always group assumptions and promises and may be formulated between interfaces 
in: 

• components at the same level of decomposition within a model 
• components in a parent – child relationship 
• components capturing the system at different abstraction levels 

SysML as an HRC front-end 
So far we have presented the HRC format and its capabilities in isolation. There is, on purpose, a formal 

mapping between SysML and HRC as outlined in  

Figure 3. In SysML terms the following diagrams are supported by HRC: 
• Internal Block Diagram 
• Block Definition Diagram 
• Statechart diagram 
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Figure 3: Relationship between SysML and SPEEDS 
 

The partial overlap with SysML allows engineers to perform design work up to the definition 
of contracts in SysML syntax in a standard SysML tool. For the contract specification and 
management parts of a system model, it is transformed to HRC format and 
assumptions/promises are added through a dedicated A/P editor (Assumption/Promise editor) 
developed within the SPEEDS project. 

Perceived advantages 
The primary driver for SAAB’s interest in the assumption/promise paradigm is in inclusion of 
assumptions in the toolbox provided to our engineering teams. We consider formal analysis 
promising, but in the general case not yet mature enough for large scale industrial application.  

A promise does coincide with requirements as used in traditional development methods, in the 
sense that it expresses function, performance or any non-functional property of a component. 
Assumptions on the other hand allow engineers to state expected properties or behaviours of 
the environment in a persistent format. This is in itself highly valuable as information about 
the design assumptions, in our experience, are seldom captured and maintained. In addition, 
the advantage is that concurrent subsystem development can be initiated and coordinated 
before system requirements are stabilised. As contracts are formed by combining assumptions 
and promises it is natural to review their compatibility and consistency as part of system 
reviews and hence a natural element in the design process. Additionally the assertions allow 
design teams to independently specify properties that are assumed or guaranteed allowing for 
raising the visibility of a property at any time.  

This paradigm is also expected to clarify to the engineers the interaction between the design 
process and the configuration management process. Change proposals and CCB 
(Configuration Control Board) interaction on system level is called for upon changes in 
component interface, assumptions, or promises.  



The Utopar experience 
A fictitious transportation system, Utopar, was used to provide early validation of the 
SPEEDS methodology. Utopar is outlined in (Engel et al 2008) and consists of a set of 
autonomous taxis (U-cars) serving a future metropolis. Within the validation activity of the 
contract based approach, SAAB chose to focus on the Propulsion and Brake System (PBS) 
within the U-car. Our interest in this system is due to its close connection to physical 
products/parts and their properties. The special objective with SAAB’s validation work is to 
evaluate the applicability of the SPEEDS methodology to this kind of systems as we see a 
potential for applying the methodology in our systems engineering process. In particular, 
SAAB has been interested in capturing the allocation of system properties such as weight, 
cost and reliability information from system to subsystem level, and capturing timing and 
performance parameters. For modelling, SAAB has used the Telelogic Rhapsody tool. 

System overview 
The Utopar propulsion and brake system (PBS) is the component in the U-car that provides the means for 
controlling the speed of the U-car, i.e., the means for ensuring a safe travel function for Utopar residents 

in terms of well balanced acceleration and retardation. The environment of the PBS is presented in  
Figure 4. The PBS interfaces with a sense and avoid system for collision avoidance and a Communication 

and Navigation system for receiving commands and transmission of status messages. Note that the 
product structure component is not available in the model, i.e., the U-car component is not visible in  

Figure 4. 
 

Safe travel

Sense&Avoid1
max_safe_speed:int

Comm&Nav1
requested_speed:int

System_blocks::PBS
«block»

actual_speedA:int

max_safe_speed:int

«flow»
max_safe_speed

requestedSpeed:tVelocity

«flow»
requested_speed

actual_speedB:int«flow»
max_safe_speed

«flow»
requested_speed

Sense&Avoid1
actual speedA:int

«flow»«flow»

Comm&Nav1actual_speedB:int

«flow»«flow»

 
 

Figure 4: The PBS system environment 
 



 
Figure 5: PBS internal structure 
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Internally the following PBS components were identified as illustrated in Figure 5: 
• Speed sensor 
• Friction sensor 
• Regulator 
• Brakes 
• Engine 
• Energy storage 

In addition, to keep the connection to the U-car, the chassis of the car is identified as a 
component external to PBS. 

The following examples of assumptions and promises were captured internal of the PBS and 
with external components: 

• Static propositions of component cost and weight with relationships to U-car 
performance. The case is created to produce a multi-variable trade space exploration 
example where objective functions are used to determine the optimal component 
configuration.  

• Temporal separation of messages 
• Constraints on rate of data exchange 

A sample of the assumptions and promises captured on PBS system level (corresponding to  

Figure 4) are presented below 
 

ID Signal Unit Time-
domain Direction Assertion 

PBS-4 max_safe_speed Float/ 
m/s discrete In 

Sense and avoid data is less 
than 0.2 seconds old (as 
compared to observation 
made by ideal sensor) when 
available at input.  

PBS-5 max_safe_speed Float/ 
m/s discrete In 

Latency between update of 
signal by sense & avoid and 
reading is less than 0.05s. 

 

Further SAAB work 
Based on the positive early experience in Utopar, SAAB is currently initiating a method 
validation study where the methodology will be applied to the integration of a podded 
subsystem onto the Gripen aircraft. Integration considers physical properties, physical flows 
(power and air cooling) and digital communication in the system.  

Discussion 
What is striking about the initial work performed is the amount of communication between 
subsystem development teams that have been initiated by assumptions stated. Such 
assumptions have:  



• highlighted design problems that may not have been considered at all, or alternatively 
discovered late in the design process 

• served as drivers for harmonising subsystem design solutions towards optimum. We 
have noticed that the existence of both assumptions and promises on components 
creates a climate where subsystem developers can more easily communicate the 
rationale for assumptions made and also non agreeable consequences of the 
assumptions not being met, or promises not being relaxed. 

Assumptions form a good mechanism for initiating interaction among subsystem engineers. 
Likewise we have seen its value in communication between engineers at different system 
levels for allocation of system properties, e.g., weight. Here we let the parent component 
capture an assumption on the child system property and form the contract with the promise 
made by the subsystem for the property. For example, the parent component may assume that 
the weight of a child component is 5 kg or less, while the child component may promise a 
weight of 5.4 kg. In this case the contract would obviously be violated forcing a renegotiation 
between engineers responsible for the systems. 

As we are focusing on contracts in natural language, the early verification is performed 
through contract inspection. Such verification is based entirely on model content, i.e., the 
assumptions and promises in individual contracts. Of course, normal verification on the 
realised system will be based on the requirements captured, i.e., the promises.  

Capturing functional properties using SysML as a front end to the formal HRC is really 
straightforward. A flow- or service port in SysML corresponds to an interface in HRC. But, 
HRC requires all properties to be involved in a contract to be expressed using a port (in HRC 
format). In the current experimental implementation between SysML and HRC the only 
mapping between HRC interfaces and ports are through SysML ports. This forces the creation 
of ports for capturing non-functional aspects. For instance, ports must be created for allowing 
assertions on component weight. This is of course not a natural way of modelling. It would be 
desirable if future HRC implementations in SysML would allow capturing contracts on non 
functional properties directly. 

In the validation study we have used a project proprietary tool for capturing assertions and 
forming contracts – the A/P editor. For future projects we plan to use our standard 
requirements management tool – DOORS for this task. Extending DOORS to manage 
contracts is a matter of creating modules for assumptions, promises and contracts. Standard 
DOORS links would be used to link assumptions and promises to form contracts. DOORS 
also provides the means for capturing additional attributes on each assertion, e.g. stability for 
assertions or verification status for contracts. The DOORS – Rhapsody interface is already in 
existence off the shelf, so maintaining consistency between model and assertions is not 
expected to be problematic. 

Conclusions 
In this paper we have presented initial experience from application of the Contracts Based 
Systems Engineering method developed by the SPEEDS project. For industrial application we 
believe this to be a substantial step forward in specification practise in concurrent engineering 
projects; the method provides a dedicated specification element for capture of design related 
assumptions and the mechanism to couple these with requirements - the promises. Initial 
application of the method indicate that assumptions improve communication between 
engineers in a natural way, and it provides means for all parties involved in an interface to 
express constraints on the interaction. Our next step in deploying the method will be through 
additional and larger pilot projects – potentially also through a cross-organisational project. 
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