
Initial Experience in Contracts Based Systems
Engineering

Erik Herzog, Henric Andersson*
{erik.herzog, henric.andersson}@saabgroup.com

SAAB Aerosystems
Sweden

Copyright © 2009 by Erik Herzog and Henric Andersson. Published and used by INCOSE with permission.

Abstract. Engineering process efficiency is the target of any systems engineering
organisation. In this paper we review initial experience from applying the Contracts based
systems engineering method developed by the SPEEDS project. The method is outlined along
with experience gathered from pilot projects performed at SAAB Aerosystems. Outlines for
adapting the method to mainstream tools as well as future adoption activities are also
presented.

Introduction
Divide and conquer is the established approach for mastering complexity in development of
systems. Of course, other terms are preferred, e.g., systems engineering, but the basic premise
remains the same: We seek to divide intangible problems in order localise smaller tangible
ones that enable future integration and realisation of a working solution. Multiple strategies
are applied, e.g., partitioning according to functional or technology domains.

Formulation of proper requirements and architectural design is key factors for successful
implementation, and literature on these topics is abundant. Multiple development processes
have been proposed and accepted by industry, e.g., waterfall, spiral, or the iterative process.
Over the last half century they have also been tuned to properly address the challenges of
embedding software in systems. Space is not sufficient here to capture software’s role in
system development and the associated challenges, see (Doyle and Pennotti 2008), (Wenzel
and Bornemann 2006), and (Sheard 2004) for an overview. Concurrent Engineering practises,
i.e., the initiation of subsystem development prior to completion of system level development,
has also be applied to systems engineering process and is now an accepted part of the systems
engineering toolbox. Multiple papers on concurrent systems engineering has been published
at INCOSE events, e.g., (Rhodes and Smith 1992) and (Wade 1995).

The traditional approach in Systems engineering is to refine requirements such that they can
be allocated to a single system component or component interface and pass down the
responsibility for further development to the component level engineering team. With this
approach, feedback in the form of integration and verification results to system level
engineers is often late and far from satisfactory. One reason for this is, of course, the
complexity of component interfaces and also the fact that the knowledge of the integrated
system is limited at the time when requirements are allocated. Integration occurs usually late
in the process. Early, virtual (in model based tools), integration activities are seldom
performed.

* Also at the Division of Machine Design, Department of Management and Engineering, Linköpings Universitet,
Sweden

We believe that one contributing factor to problems in integration is the prevailing practise in
industry to focus exclusively on textual requirement statements. Systems engineers have been
taught to refine and distribute requirements among the components, interfaces and behaviour
elements that shall fulfil the needs while no or little regard is placed on the assumptions made
on the components and interfaces in the design process.

The importance of documenting assumptions lies in the fact that for any complex system the
sum of requirement statements on a component will not be exhaustive – in industrial reality
the requirements stated on a component will only specify a subset of the complete
functionality, behaviour or other properties of a component. At first such statements may
appear absurd – intuitively completeness is a matter of adding requirement statements until
the characteristics of a product are “completely” defined. But in reality the lack of system
knowledge at the time of requirement formulation makes attempts to achieve completeness
impractical – even counter productive as many of the characteristics captured when striving
towards completeness are bound to be either self-evident or be unnecessary constraints for the
designing engineers. Additionally, overly detailed requirements may add unreasonable costs
in implementation and verification.

Requirements engineering literature is adamant on the importance on requirements validation,
i.e., ensuring that requirements are well formed, sound and affordable, but we have yet to see
literature placing equal importance on assumptions validation – with the notable exception of
the ARP-4754 standard (SAE 1996). This focus on requirements, at the cost of assumptions,
is also evident in our standard design documentation: In our templates we have sections for
capturing requirements of different kinds, but there is at most a single section for capturing
the assumptions made. Likewise, in SysML we have a dedicated requirement artefact, but no
corresponding one for assumptions (although there is a rationale item defined in the
language).

In the rest of this paper we outline the approach for adapting the design by contract method
popularised in the Eiffel language to systems engineering and to SysML as performed within
the EU funded SPEEDS (SPEEDS 2008) project
†. Initial experience from applying the SPEEDS methodology on a fictitious transportation
system is presented along with experience gained on SAAB internal projects.

Design by Contract
The term “design by contract” was introduced with the Eiffel (ISO 25436 2006) programming
language and associated development method. The underlying idea is to create a development
context similar to that of well formed business agreements. For each component formal
assertions on software block pre-conditions and post-conditions are developed prior to or in
parallel with development of the source code.

Any pre-condition captured is an assumption on the data provided to the block, i.e., the block
itself does not exercise any control over data provided upon the entry of the block. Similarly,
a post-condition is a promise in that it guarantees properties of the data upon completion of
execution of the block. Contracts are formed by the combination of promises on a code block
with assumptions on the following code block. The contract holds if the assumptions made for
a block are compatible with promises made by interfacing code blocks. Contracts in the Eiffel

† SPEEDS is an acronym for SPEculative and Exploratory Design in Systems Engineering. The project is
funded under European Union 6th Framework Project in Embedded Systems Development (2006-2009)
IP Contract No 033471. The support is gratefully acknowledged.

language provides the means for efficient code inspection, for on-line monitoring of software
execution, for conformance with contracts, and for formal analysis.

Consequently, the Eiffel language provides valuable tools to engineer reliable software. It
must however be noted that despite its technical merits and it being an ISO standard it is our
perception that Eiffel is not widely used in industrial software development projects.

SPEEDS
SPEEDS is a pan European project with the objective to define a new generation of end-to-
end methodologies, processes and supporting tools for embedded system design. The
SPEEDS project aims at significant improvements of the competitiveness of industry in the
sector of embedded systems by means of enhancing model-based systems engineering with

• semantics-based modelling to
o support the design of complex embedded systems using heterogeneous sub-

system models, and
o enable sound integration of existing and new modelling and analysis tools.

• novel formal analysis tools and techniques that will allow exploring architectural
implementation alternatives and “first-time-right” design using the “design-by-
contract” paradigm.

The problems addressed by SPEEDS are:
• How to reach a system design solution in a multi-dimensional, concurrent, and multi-

disciplinary development environment.
• How to meet multi-dimensional constraints (e.g. safety, reliability, maintainability,

resource usage, cost and time).
• How to overcome concurrent, multi-disciplinary, and cross-organizational

environment and ensure robust and flexible design, including manufacturers/suppliers
cooperation.

• How to provide cost-efficient mapping of applications and product variants onto
embedded platforms.

• How to manage risk in the design caused by missed/unstable requirements and design
uncertainties.

In this paper we focus on the aspects of SPEEDS associated with the design-by-contract
paradigm. The theoretical aspects of SPEEDS are reported in (Engel et al, 2008, Josko et al,
2008). Focus herein is on the end-user oriented aspects of the method. This said, some brief
overview of the underlying technology is called for to put the end user experience into
context.

Contracts in Systems Engineering
The SPEEDS methodology is based on a model based engineering approach, in particular
component based modelling. An information model, HRC (Heterogeneous Rich Component),
has been developed providing a semantically well founded base for the method. The HRC
model is extensive and defined to support representation of component models originating
from languages and tools such as SysML, Matlab/Simulink and SCADE. The semantics is
defined such that any of these tools could be used as frond-end modelling editor for creating
HRC compliant models. The core notion in HRC is that of the component. HRC supports the
definition of contracts captured between components in a manner similar to that of the Eiffel
method. A component in HRC may have any number of interfaces – each conveying a
functional or non-functional property of the component. Interfaces may be flow- or service

oriented similar to the ports in SysML and they carry information with an associated type. In
this aspect HRC is very much similar to any block oriented specification method, e.g., SysML
Internal Block Diagram or Simulink block models. Any number of assertions (assumptions or
promises) may be associated with an interface, where:

• An assumption is a statement on the expected properties (physical or logical
properties, signals) fed to the interface through the environment, i.e., properties that
are not controlled by the component. In flow oriented design environments such as
SysML Internal Block Diagrams, assumptions are captured on input ports.

• A promise is a statement of the properties guaranteed for a component interface –
given that assumptions made on other component interfaces are fulfilled by the
environment. In flow oriented design environments such as SysML Internal Block
Diagrams promises are captured on output ports.

When looked upon in isolation, an HRC component and associated assumptions and promises can be
defined as presented in

Figure 1. The example is also available in Andersson (2009).

System component

Assumption:
Signal latency
from sensor
reading is at
most 2 ms

Promise:
Input-output
signal latency is
at most 3 ms

Promise:
16-bit
resolution,
accurancy +- 3
lsb

Figure 1: Component model with Assumption - Promises

In

Figure 1 interfaces are presented as flow interfaces, however interfaces may be created for
any system property that shall be set in the engineering process, e.g., component weight, size
or cost.

Note: In this paper we present assertions in plain English. There is also a formal language,
CSL (Contract Specification Language), developed by the SPEEDS project which allow for
formal definition of assertions, which in turn enables formal analysis of contracts. This aspect
of SPEEDS is discussed in (Engel et al, 2008), but has not yet been applied by SAAB and
consequently not further touched upon in this paper.

Contracts: Combining Assumptions and promises
Assumptions and promises from different components are linked to form contracts indicating that the

assumed characteristics of an input interface of a component are intended to be satisfied by the output of
the component providing the information.

Figure 2 illustrates contracts captured between interfaces of two components K1 and K2. The
semantics is such that for Contract C1 the assumption A21 must be satisfied by P11. As stated

above, contract satisfaction could be established through formal analysis (provided that K1
and K2 are unambiguously specified) or through manual review.

The use of the term Contract to denote a modelling concept deep within a modelling
methodology is not trouble free. Our intuitive interpretation of the term contract is that it is a
business level agreement which is far from the ‘micro’ style contracts introduced herein. Still
we believe the term contract is appropriate as it is our objective to create a clear view of
obligations between development teams. Appropriate or not it takes a short extra effort to
communicate the semantics of the word contract.

K1

A11

P11

P12

A12

K2

A21

P21

C1

A21

C2

Figure 2: Assumptions and promises combined to contracts

Contracts always group assumptions and promises and may be formulated between interfaces
in:

• components at the same level of decomposition within a model
• components in a parent – child relationship
• components capturing the system at different abstraction levels

SysML as an HRC front-end
So far we have presented the HRC format and its capabilities in isolation. There is, on purpose, a formal

mapping between SysML and HRC as outlined in

Figure 3. In SysML terms the following diagrams are supported by HRC:
• Internal Block Diagram
• Block Definition Diagram
• Statechart diagram

SysML

Requirement

Use Case

Activity

SPEEDS

Internal Block
Assumptions

Promises

Statechart

Formal analysis

Hosted
simulationParametrics

Block definition

Figure 3: Relationship between SysML and SPEEDS

The partial overlap with SysML allows engineers to perform design work up to the definition
of contracts in SysML syntax in a standard SysML tool. For the contract specification and
management parts of a system model, it is transformed to HRC format and
assumptions/promises are added through a dedicated A/P editor (Assumption/Promise editor)
developed within the SPEEDS project.

Perceived advantages
The primary driver for SAAB’s interest in the assumption/promise paradigm is in inclusion of
assumptions in the toolbox provided to our engineering teams. We consider formal analysis
promising, but in the general case not yet mature enough for large scale industrial application.

A promise does coincide with requirements as used in traditional development methods, in the
sense that it expresses function, performance or any non-functional property of a component.
Assumptions on the other hand allow engineers to state expected properties or behaviours of
the environment in a persistent format. This is in itself highly valuable as information about
the design assumptions, in our experience, are seldom captured and maintained. In addition,
the advantage is that concurrent subsystem development can be initiated and coordinated
before system requirements are stabilised. As contracts are formed by combining assumptions
and promises it is natural to review their compatibility and consistency as part of system
reviews and hence a natural element in the design process. Additionally the assertions allow
design teams to independently specify properties that are assumed or guaranteed allowing for
raising the visibility of a property at any time.

This paradigm is also expected to clarify to the engineers the interaction between the design
process and the configuration management process. Change proposals and CCB
(Configuration Control Board) interaction on system level is called for upon changes in
component interface, assumptions, or promises.

The Utopar experience
A fictitious transportation system, Utopar, was used to provide early validation of the
SPEEDS methodology. Utopar is outlined in (Engel et al 2008) and consists of a set of
autonomous taxis (U-cars) serving a future metropolis. Within the validation activity of the
contract based approach, SAAB chose to focus on the Propulsion and Brake System (PBS)
within the U-car. Our interest in this system is due to its close connection to physical
products/parts and their properties. The special objective with SAAB’s validation work is to
evaluate the applicability of the SPEEDS methodology to this kind of systems as we see a
potential for applying the methodology in our systems engineering process. In particular,
SAAB has been interested in capturing the allocation of system properties such as weight,
cost and reliability information from system to subsystem level, and capturing timing and
performance parameters. For modelling, SAAB has used the Telelogic Rhapsody tool.

System overview
The Utopar propulsion and brake system (PBS) is the component in the U-car that provides the means for
controlling the speed of the U-car, i.e., the means for ensuring a safe travel function for Utopar residents

in terms of well balanced acceleration and retardation. The environment of the PBS is presented in
Figure 4. The PBS interfaces with a sense and avoid system for collision avoidance and a Communication

and Navigation system for receiving commands and transmission of status messages. Note that the
product structure component is not available in the model, i.e., the U-car component is not visible in

Figure 4.

Safe travel

Sense&Avoid1
max_safe_speed:int

Comm&Nav1
requested_speed:int

System_blocks::PBS
«block»

actual_speedA:int

max_safe_speed:int

«flow»
max_safe_speed

requestedSpeed:tVelocity

«flow»
requested_speed

actual_speedB:int«flow»
max_safe_speed

«flow»
requested_speed

Sense&Avoid1
actual speedA:int

«flow»«flow»

Comm&Nav1actual_speedB:int

«flow»«flow»

Figure 4: The PBS system environment

Figure 5: PBS internal structure

S
ys

te
m

_b
lo

ck
s:

:P
B

S
«b

lo
ck

»

D
ec

od
e_

sp
ee

d
1

ac
tu

al
_s

pe
ed

:in
t

se
ns

e_
fri

ct
io

n
1

m
ea

su
re

d_
fri

ct
io

n:
flo

at

R
eg

ul
at

e_
sp

ee
d:

R
eg

ul
at

e
1

«b
lo

ck
»

ac
tu

al
_s

pe
ed

A
:in

t

po
w

er
_c

on
tro

l:i
nt

br
ak

e_
co

nt
ro

l:i
nt

ac
tu

al
_s

pe
ed

B
:in

t

st
ra

te
gi

c_
sp

ee
d:

in
t

ta
ct

ic
al

_s
pe

ed
:in

t

fri
ct

io
n:

flo
at

«f
lo

w
»

v_
ac

ua
l:i

nt

«f
lo

w
»

en
er

gy
_s

to
ra

ge
1

en
er

gy
_p

ro
vid

e:
flo

at

br
ak

es
1

br
ak

in
g_

fo
rc

e:
in

t

br
ak

e_
si

gn
al

:in
t

«f
lo

w
» en

gi
ne

1
ac

ce
le

ra
tin

g_
fo

rc
e:

in
t

po
w

er
_s

ig
na

l:i
nt

«f
lo

w
»

en
er

gy
_s

up
pl

y:
flo

at

«f
lo

w
»

ac
tu

al
_s

pe
ed

A
:in

t

«f
lo

w
»

m
ax

_s
af

e_
sp

ee
d:

in
t

«f
lo

w
»

re
qu

es
te

dS
pe

ed
:tV

el
oc

ity

«f
lo

w
»

ac
tu

al
_s

pe
ed

B
:in

t

«f
lo

w
»

«f
lo

w
»

«f
lo

w
»

«f
lo

w
»

«f
lo

w
»

«f
lo

w
»

«f
lo

w
»

«f
lo

w
»

«f
lo

w
»

«f
lo

w
»

S
ys

te
m

_b
lo

ck
s:

:P
B

S
::c

ha
ss

is
1

br
ak

in
g_

di
st

an
ce

:in
t

ac
ce

le
ra

tin
g_

fo
rc

e:
in

t

«f
lo

w
»

br
ak

in
g_

fo
rc

e:
in

t

«f
lo

w
»

«f
lo

w
»«f

lo
w

»

Internally the following PBS components were identified as illustrated in Figure 5:
• Speed sensor
• Friction sensor
• Regulator
• Brakes
• Engine
• Energy storage

In addition, to keep the connection to the U-car, the chassis of the car is identified as a
component external to PBS.

The following examples of assumptions and promises were captured internal of the PBS and
with external components:

• Static propositions of component cost and weight with relationships to U-car
performance. The case is created to produce a multi-variable trade space exploration
example where objective functions are used to determine the optimal component
configuration.

• Temporal separation of messages
• Constraints on rate of data exchange

A sample of the assumptions and promises captured on PBS system level (corresponding to

Figure 4) are presented below

ID Signal Unit Time-
domain Direction Assertion

PBS-4 max_safe_speed Float/
m/s discrete In

Sense and avoid data is less
than 0.2 seconds old (as
compared to observation
made by ideal sensor) when
available at input.

PBS-5 max_safe_speed Float/
m/s discrete In

Latency between update of
signal by sense & avoid and
reading is less than 0.05s.

Further SAAB work
Based on the positive early experience in Utopar, SAAB is currently initiating a method
validation study where the methodology will be applied to the integration of a podded
subsystem onto the Gripen aircraft. Integration considers physical properties, physical flows
(power and air cooling) and digital communication in the system.

Discussion
What is striking about the initial work performed is the amount of communication between
subsystem development teams that have been initiated by assumptions stated. Such
assumptions have:

• highlighted design problems that may not have been considered at all, or alternatively
discovered late in the design process

• served as drivers for harmonising subsystem design solutions towards optimum. We
have noticed that the existence of both assumptions and promises on components
creates a climate where subsystem developers can more easily communicate the
rationale for assumptions made and also non agreeable consequences of the
assumptions not being met, or promises not being relaxed.

Assumptions form a good mechanism for initiating interaction among subsystem engineers.
Likewise we have seen its value in communication between engineers at different system
levels for allocation of system properties, e.g., weight. Here we let the parent component
capture an assumption on the child system property and form the contract with the promise
made by the subsystem for the property. For example, the parent component may assume that
the weight of a child component is 5 kg or less, while the child component may promise a
weight of 5.4 kg. In this case the contract would obviously be violated forcing a renegotiation
between engineers responsible for the systems.

As we are focusing on contracts in natural language, the early verification is performed
through contract inspection. Such verification is based entirely on model content, i.e., the
assumptions and promises in individual contracts. Of course, normal verification on the
realised system will be based on the requirements captured, i.e., the promises.

Capturing functional properties using SysML as a front end to the formal HRC is really
straightforward. A flow- or service port in SysML corresponds to an interface in HRC. But,
HRC requires all properties to be involved in a contract to be expressed using a port (in HRC
format). In the current experimental implementation between SysML and HRC the only
mapping between HRC interfaces and ports are through SysML ports. This forces the creation
of ports for capturing non-functional aspects. For instance, ports must be created for allowing
assertions on component weight. This is of course not a natural way of modelling. It would be
desirable if future HRC implementations in SysML would allow capturing contracts on non
functional properties directly.

In the validation study we have used a project proprietary tool for capturing assertions and
forming contracts – the A/P editor. For future projects we plan to use our standard
requirements management tool – DOORS for this task. Extending DOORS to manage
contracts is a matter of creating modules for assumptions, promises and contracts. Standard
DOORS links would be used to link assumptions and promises to form contracts. DOORS
also provides the means for capturing additional attributes on each assertion, e.g. stability for
assertions or verification status for contracts. The DOORS – Rhapsody interface is already in
existence off the shelf, so maintaining consistency between model and assertions is not
expected to be problematic.

Conclusions
In this paper we have presented initial experience from application of the Contracts Based
Systems Engineering method developed by the SPEEDS project. For industrial application we
believe this to be a substantial step forward in specification practise in concurrent engineering
projects; the method provides a dedicated specification element for capture of design related
assumptions and the mechanism to couple these with requirements - the promises. Initial
application of the method indicate that assumptions improve communication between
engineers in a natural way, and it provides means for all parties involved in an interface to
express constraints on the interaction. Our next step in deploying the method will be through
additional and larger pilot projects – potentially also through a cross-organisational project.

References
Andersson H. 2009. Aircraft Systems Modeling – Model Based Systems Engineering in
Avionics Design and Aircraft Simulation, Linköping Studies in Science and Technology,
Licenciate Thesis No. 1394.

Doyle and Pennotti 2006. Doyle, Laurence; Pennotti, Michael Impact of Embedded Software
Technology on Systems Engineering, In Proceedings INCOSE 06, 2006.

Engel Avner, Winokur Michael, Enzman Marc, Döhmen Gert. 2008. Assumptions / Promises
Shifting Paradigm in Systems Engineering, In Proceedings of INCOSE 08, INCOSE 2008.

ISO/IEC 25436:2006 - Information technology -- Eiffel: Analysis, Design and Programming
Language, 2006

Josko Bernard, Ma Qin, Metzner Alexander. 2008. Designing Embedded System Component
Using Hetergeneous Rich Components, In Proceedings of INCOSE 08, INCOSE 2008.

SAE ARP 4754. 1996. Certification Considerations for Highly-Integrated or Complex
Aircraft Systems, Society of Automitve Engineers, 1996.

Rhodes Donna and Smith Carey. 1992. Practical Application of Concurrent Engineering for
Systems Integration. In Proceedings of the second annual international symposium of the
National Council on Systems Engineering. NCOSE, 1992.

Sheard, Sarah. 2004. Adapting Systems Engineering for Software-Intensive Systems. In
Proceedings INCOSE 04, 2004.

SPEEDS, 2008, The SPEEDS project website: http://www.speeds.eu.com, accessed 2008-11-
24.

Wade James. 1995. Systems Engineering Process Standardization: A Road Map for
Concurrent Engineering. In Proceedings of the fifth annual international symposium of the
National Council on Systems Engineering. NCOSE. 1995.

Wenzel, Stefan; Bornemann, Falk. 2006. Managing Compatibility Throughout the Product
Life Cycle of Embedded Systems: Definition and Application of an Effective Process to
Control Compatibility. In Proceedings INCOSE 06, 2006.

Biography
Dr. Erik Herzog is a Systems Engineering specialist at Saab Aerosystems AB. Dr. Herzog
received his Ph.D. at the Department of Computer and Information Sciences at Linköping
University, Sweden. His professional interests include development and introduction of
Systems engineering processes, specification methods, information modelling and tool
integration techniques. Dr. Herzog is active in many INCOSE working groups and has
implemented the INCOSE i-pub system.

Henric Andersson is a control engineer at Saab Aerosystems in Linköping. He works in the
Systems Engineering Division responsible for recommending methods and tools for use on
Saab aerospace development programmes. The key interest is modeling techniques,
requirements management and tool integration with special focus on systems design and
simulation. He is also an industry PhD student in model based systems engineering at
Linköping University.

	Prev:
	Next:
	Close:
	First:

