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Abstract. Traditional systems engineering is tailored to systems with complex subsystems 
having well-described physical and functional attributes and interfaces. Moreover, a network 
system generally features precisely defined communication signal and data protocols. We 
submit that development of swarming networks that do not exhibit such discrete linear 
attributes represents a new class of systems that can benefit from a new approach to systems 
engineering methodology. We will describe the new systems engineering concept of 
“near-neighbor interaction zones” for systems engineering processes and apply this approach 
to a case study of one such system, an automated swarming intrusion detection network to 
alleviate the monitoring burden on security operators. The result is a large-scale complex 
system that is potentially more tractable and efficient to develop and operate from a human 
cognition perspective. 

Introduction 
A system is described [Kossiakoff and Sweet, 2003] as “a set of interrelated components 
working together toward some common objective.” As we know, the engineering of such 
systems becomes “interesting” when the system is complex with many components and 
functional interactions. The process for systems engineering (S.E.) is well defined and well 
used, e.g., [INCOSE Handbook]. However, the engineering of swarming systems requires a 
departure from classical S.E. The approach to S.E. of swarming emergent systems should 
reflect the nature of such systems. Therefore, we begin with a discussion of their 
characteristics. 

This class of systems is analogous to swarming organisms in the natural world, as has been 
described, for example, [Johnson, 2004] related to ants that exhibit very simple behaviors and 
interactions and yet act collectively with intelligence in performing the functions of nest 
sustainment and replication. Johnson [2004] describes emergence as “solving problems by 
drawing on masses of relatively stupid elements, rather than a single intelligent executive 
branch.” He describes “bottom-up” intelligence, or self-organization, and he discusses it in 
areas that run the gamut from slime mold to human brains and software. Whether investigating 
swarm cells, neurons, or zeros/ones, the important aspect in swarm logic is that the basic 
elements think and act locally but their aggregated behavior demonstrates a collective, 
beneficial effect. This local behavior not only motivated our conception of a swarming intruder 
network, but also motivated what we consider a novel system specification and design 
approach. 

Human engineered systems also exhibit an analogous collective wisdom demonstrated vividly 
every day in events such as betting pools, the stock market, and jelly bean guessing contests 
where crowds are the basic norms. But for these crowds to be effective they have to have 



 

certain characteristics: diversity of opinion, independence, de-centralization, and aggregation. 
In short, there must be a free exchange of ideas, with many conflicting views expressed, and the 
answer must be an aggregation of those views, not just a group consensus. This aggregation 
appears to arise from individuals engaged in dialog with their peers, their “near-neighbors.” 

Table 1 summarizes some distinct differences between the design of this type of system and the 
more traditional systems such as spacecraft and communication systems. 

Table 1: Design Differences between Conventional Systems and Swarming Networks 
Attributes Conventional Systems Swarming Networks 

Control Can be physically localized Apparent and distributed 
Predictability Generally deterministic/linear May appear ad hoc/nonlinear 
Interfaces Precise specification/protocol Very simple/inferential 
Design Complex subsystems Extreme component count 
Reconfiguration Discrete design features Inherent/no explicit design 
Scalability Scale by x 2’s with design modifications Scales by x 10’s without design 

modifications 
Design hierarchy Typically multiple levels (system to 

components) 
Typically fewer levels 

The following summarize behaviors of interest in swarming systems. 

• Swarming – the ability of the system to focus in an ad hoc manner based on an input to 
any individual component 

• Distributed Intelligence – whereas no single element possesses the information or 
orchestrates a response, a collection of system elements appears to respond intelligently 

• Inferential Signaling without Protocol – the nontraditional conveyance of information 
that may consist of inferences from simple signals or behaviors, i.e., “body language” 
from near-neighbors 

• Chaotic – the system seemingly behaves in a manner that borders on unpredictable or 
unstable 

• Emergent – effects and behaviors are appearing at higher levels that are not explicitly 
evident in lower level components. 

Relevant papers were presented at the INCOSE International Symposium held in Utrecht, 
Netherlands, in June 2008. Of specific interest to us was a panel on “How to Engineer the 
Emergent Behavior of a System of Systems.” The panel’s challenges included “how to 
understand the initiation mechanism of the emergent behaviors for a particular system 
architecture model so that the resident beneficial or harmful emergent behavior can be 
enhanced or mitigated with selected changes in the current system architectural model.”  

It boils down to the general question of coping with the conception and development of 
swarming emergent systems such as these when the theory does not exist. Is experimentation 
the only way, and with a systems of systems, would one be able to experiment sufficiently due 
to problems of complexity, scale, and economics to satisfy oneself of a reasonable level of 
understanding of the system from the standpoint of performance and risk? 

We will propose a system model as the basis for a new tractable systems engineering approach 
to swarming systems. We will exercise the model and approach in a test case, a swarming 
network that is presently in exploratory development. 



 

 

Test Case: Swarming Intruder Sensor Network 
In part, to explore potential advantages of swarming networks, as well as the S.E. implications, 
the authors conceived of a swarming intruder detection and tracking sensor network [Krill et 
al., 2007]. This section describes the concept, top-level requirements, and interaction 
requirements. In the section that follows we will discuss a new “near-neighbor interaction in 
zone” approach to the S.E. of such a swarming system. This is our initial attempt to develop a 
simplified means of addressing these challenging entities. 

Figure 1 illustrates the essential elements of the network. A large number of nodes, disguised 
here as “pebbles,” is randomly distributed, e.g., air dropped or individually placed, with the 
condition that there is sufficient density so that each pebble is within sensor and 
communication range of its near-neighbors. The pebble field surrounds an installation, 
pipeline, or building to be protected. 
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Figure 1. Elements of the Network 

Each pebble is set to a “cold” sensor detection threshold for the requisite probabilities of 
detection (Pd) and false alarm (Pfa). An intruder entering the pebble field will be detected by the 
sensors of one or more pebbles’ sensors as the intruder passes within their sensor detection 
ranges. A pebble making a sensor detection will emit a microwave “cue” tone of only sufficient 
power to be detected by near-neighbor pebbles. Those pebbles detecting the cue tone through 
their communication receivers will set their sensor detection thresholds to a more sensitive 
“cued” threshold so they are more likely to detect the nearby intruder. The “cued” pebbles that 
also detect the intruder, in turn, transmit cue tones to be received by their nearest neighbors. A 
cue tone will continue to be transmitted by a pebble only while the sensor detection continues 
and for several seconds after the detection. The pebble then resets to its cold sensor detection 
threshold if it was previously cued. 

From a distance, e.g., several kilometers, a remote receiver with a directional antenna sweeps 
across the pebble field. If it detects sufficient power in the cue tone band via its antenna beam, 



 

indicating that some minimum number of pebbles is emitting cue tones, the receiver makes a 
“detection” and alerts an operator. The operator observes the detection history on the display 
screen as shown in Figure 1. If the history appears to be consistent with an intruder approach 
path, the operator may alert security forces or cue video cameras to gain more information.  

In this manner the field pebbles appears on the monitor to “swarm” around the intruder 
location. This swarming network is sufficiently automated that fewer operators would be 
required, for example, compared to operators continually monitoring a bank of video screens 
from a network of cameras. 

Requirements.  For this system, our key top-level requirements are: 

• Provide a probability of intruder detection of 0.9 and probability of false alarm of 10-7. 
• Localize an intruder to within 100 meters. 
• Alert an operator within 1 second of the first detection of signals by a remote receiver. 
• Provide automatic scalability from tens of pebbles to millions. 

Figure 1 shows a general design configuration for a pebble with one or more sensors and a 
communications monopole antenna to ensure full spatial coverage in a protective, perhaps 
disguised, cover. Several types of sensors could be used on different pebbles in the same field, 
for different fields, or even on the same pebble, including small microphones, infrared 
detectors, or video. Consideration could also be given to a new detection approach involving 
intruder blockage of a microwave illumination tone at a different frequency from 
communication tones as described in [Krill et al., 2007]. 

The cueing mechanism reduces false alarms and power consumption relative to an uncued 
system according to analysis [Krill et al., 2007]. The pebble block diagram is also shown in 
Figure 1. As the functionality of each sensor node is identical and since the communication of a 
detection does not require handshaking, the interfaces and functions are very simple per sensor 
node as identified in Table 2. 

Table 2: Pebble Interface and Functional Requirements 
Interface Functions 

Sensor Nodes 
Transmit cue tone upon detection Detect intruder 
Receive cue tone Set/reset detection threshold 
Receive command tone Receive and transmit cues 

Remote Monitor 
Determine if adequate total power from 
sensors to declare intruder detection 

Receive cue tones via directive beam 
Transmit command tone via directive 
beam Locate intruder direction 
 Change state of receiving nodes via command 

tone length or frequency 

Because there is no handshaking protocol or modulated data and because the transmission 
power levels are tailored to limit detection range, the resultant loosely coupled system elements 
accommodate extreme scaling in pebble coverage area. 

While working through the design requirements allocations and tailoring the interfaces, it 
occurred to us that such a swarming system can be designed using an approach that mirrors its 
near-neighbor behavior. As noted above, in nature, swarming instincts generally respond and 



 

 

stimulate their near-neighbors. We therefore postulated that, rather than detailed design 
activities for all interfaces and functions, simple, near-neighbor “zones of influence” can be 
defined as the basis for the design of the system. As in nature, each type of element is 
influenced by and/or influences a specific neighborhood, but with little or no inherent coupling 
between neighborhoods. Our premise is that if we can define and design the requirements in 
these localized zones, the entire scalable system is specified. We have termed this approach 
“Near-Neighbor Based” systems engineering. 

Near-Neighbor Based Interaction Zones 
We view our swarming pebble network as being comprised of three interaction zones as 
illustrated in Figure 2. 

• Zone Type 1: Near-neighbor signal cueing communications range (meters) 
• Zone Type 2: Sensor detection range (meters) 
• Zone Type 3: Remote monitoring and control from long (multi-kilometer) distances 

 
Figure 2. Near-Neighbor Based Interaction Zone 

For Zone Types 1 and 2, we specify the behavior for nodes only between immediate neighbors 
and design to actually extinguish influence beyond the immediate neighbors. This is analogous 
to natural swarming in nature, and the extinguishing characteristic is essential to providing 
spatially rich emergence, which can then be geographically monitored within Zone Type 3. 

By specifying only the details of activities within these “zones of influence,” we can 
characterize the system. Further, as we shall see, simple modeling of the uncertainties within 
the zones can allow system design adjustments that ensure inherent stability within the 
swarming net. Thus, relatively simple modeling coupled with rather simple confirmation tests 
can yield results directly traceable to zone performance and, therefore, to total system 
performance.  

We now describe the requirements for the interaction zones shown in Figure 2, based on 
analysis and experimentation to date [Krill et al., 2007, 2008]. 



 

For the case of cueing neighboring pebbles upon a cold detection by a pebble, the cue is 
accomplished by emitting a radio frequency (RF) tone that is then detected by a neighboring 
pebble. To prevent a “swarming instability” in which all pebbles are eventually cued and yield 
an excessive false alarm rate, cue tones last only a few seconds (we have initially selected 5 
seconds) before turning off and will not be reinitiated unless another detection is made. We 
begin by assuming that this RF tone-based cueing system is designed to provide 12 dB or 
greater signal-to-noise ratio (SNR) out to a range of 10 meters. Signal detection theory can then 
be used to determine probabilities for detection and false alarms (according to classical “ROC” 
curves). For 12 dB or greater SNR, the probability of detection (Pd) is greater than 0.93 for a 
probability of false alarm (Pfa) of 10-4. If we assume that the tone signal variation with range 
corresponds to free-space spreading, the design would then provide a 6-dB SNR at a range of 
20 meters, which corresponds to a Pd of ~0.1 for a Pfa of 10-4. For free-space propagation 
conditions, nearest neighbors will have a high Pd while the next closest neighbors will have a 
significant reduction in detection probability. More severe propagation conditions would 
further reduce the detection probability beyond the nearest neighbors. Coupled with the 
interfaces defined for each pebble transceiver, this analysis specifies the influence of 
neighbors. Table 3 indicates the simple results. 

Table 3: Zone Requirements for Zone Type 1 Near-Neighbor Pebble Cueing  

10 m (12-dB SNR) 20 m (6-dB SNR) Communication tone 
detection Pd > 0.9; Pfa = 10-4 Pd < 0.1; Pfa = 10-4 

The feasibility of the design parameters described above have been demonstrated by design 
analysis [Krill et al., 2007]. An RF tone-based signaling link that provides 12-dB SNR at 
10 meters can be achieved with pebble design parameters (i.e., transmit power, antenna gain, 
noise bandwidth, integration time, propagation conditions, etc.) that are conducive to the small 
size, low cost, long battery life that the concept requires. We have also conducted propagation 
and connectivity experiments of pebble-to-pebble communications using commercially 
available wireless sensor modules to emulate the pebbles [Krill et al., 2008]. These 
experiments, which provide the basis for the propagation conditions assumed above, 
demonstrated free-space spreading for elevated modules and more severe attenuation with 
range for modules located on the ground. 

For the case of sensor detection of an intruder, the detection could be accomplished by a 
number of means, including passive audio detection, passive infrared detection, or detection of 
blockage on an RF illumination signal [Krill et al., 2008]. We begin by assuming that a 
detection system is designed to provide 12 dB or greater SNR out to a range of 10 meters from 
the intruder location. As before, signal detection theory can then be used to determine 
probabilities for detection and false alarms. For 12 dB or greater sensor SNR, the “cold” 
probability of detection is greater than 0.93 for a Pfa of 10-4. If the sensor has been cued, we 
assume that it lowers the detection threshold to increase the Pd. For example, for a 12-dB SNR, 
the detection threshold can be lowered to achieve a Pd of 0.995 for a Pfa of 10-2. If the detection 
is increased to 20 meters, the same sensor system provides a 6-dB SNR, assuming that 
free-space spreading propagation conditions are in place. In this case, the cold Pd is 0.1 for a Pfa 
of approximately 10-4 and the cued Pd is 0.5 for a Pfa of 10-2. These passive sensor detection 
results are summarized in Table 4. 

 

 



 

 

Table 4: Example Requirements for Pebbles in a Passive Detection (Type 2) Zone 
 Passive Detection at 10 m 

(12-dB SNR) 
Passive Detection at 20 m 

(6-dB SNR) 
Cold detection Pd > 0.9; Pfa = 10-4 Pd < 0.1; Pfa = 10-4 
Cued detection Pd > 0.99; Pfa = 10-2 Pd < 0.5; Pfa = 10-2 

Finally, Table 5 indicates the zone (Type 3) conditions for the remote monitor. From [Krill et 
al., 2008] a straightforward analysis showed that a remote receiver receiving the incoherent 
sum of five or more pebbles represents an acceptable likelihood of intruder presence. 

Table 5: Requirements for Remove Monitor/Control Zone 
Monitor probability of detection for at least five pebbles >0.9 for specified range region 
 With associated probability of false alarm of 10-4 
 With localization of transmitting pebbles within 100 m CEP* of centroid 
*CEP – Circular Error Probable 

Coupled with the interfaces defined for each pebble transceiver (Table 2), Tables 3 to 5 specify 
the influence of neighbors.  

Initial concerns were that propagation variations among pebbles in a field could cause a 
substantial deviation in zone detection ranges between pebbles. For example, experiments 
reported in [Krill et al., 2008] indicate that pebbles on the ground will exhibit rapid propagation 
loss beyond a few meters under normal propagation conditions, but elevated pebbles can 
exhibit free space (R-2) propagation loss, which is the basis for the zone requirements described 
previously. For microwave tones propagation ducting conditions can occur, where guided 
wave conditions could increase propagation to lower loss than even free space [Krill et al., 
2008]. Preliminary design analysis indicated that designing a signal strength measurement 
capability would allow pebbles to periodically automatically adjust receiver gain, receiver 
sensitivity, or transmit power to maintain the zone conditions described previously, essentially 
12-dB SNR at 10 meters. This form of “automatic gain control” appears to provide an emergent 
design feature allowing the pebble field to maintain the requisite performance by adapting to 
propagation loss variations over space and time. It also allows for random placement over 
terrain. 

Simulation of Swarming Network 
On the basis of these zone conditions assuming the automatic gain control (AGC) feature, a 
simulation was developed to gain further first order insights into the swarming behavior. The 
simulation that was created to perform some initial investigations into the system performance 
is not unlike Mitch Resnick’s “Star Logo” simulation [Johnson, 2004] that mimics the behavior 
of slime mold, except that the sensors in our simulation are not allowed to move. Basically, an 
array of pebble sensors is modeled, each with a very simple rule set governing its behavior, 
such that the collective behavior could indicate “intrusions” that could be remotely monitored.  

The simulation models the case of 20,164 pebble sensors distributed in an evenly spaced grid 
over 1 square kilometer (for a grid spacing of 7 meters). A mouse interface allows insertion of 
a moving intruder through the grid. At each time step, the state of each sensor is updated to 
reflect intruder detections, communication among nearby sensors, false alarms, etc. The result 
is effectively a cellular automaton with the mouse-controlled intruder as an additional external 
stimulus. 



 

Each sensor’s cued “alert state” is indicated by gray levels. On the simulation display each 
white pixel indicates a “cold” sensor that is not detecting or receiving, and each black pixel 
indicates a sensor that has detected an intruder and is emitting a tone to be received by nearby 
sensors that in turn respond by temporarily decreasing their detection threshold to the cued 
setting, indicated by the gray pixels. 

At each time step, the process of updating the state of each cell in the automaton – that is, each 
sensor in the grid – consists of a single Bernoulli trial. The probability of “success” (i.e., 
detection or false alarm) for a sensor is determined by two factors: the current detection 
threshold state of the sensor (“cold” or “cued”) and a unit step function (detection or false 
alarm) of range to the intruding target, if one exists. This detection range is fixed at 10 meters. 
Given the resulting probability of success, a uniform pseudo-random number in the unit 
interval determines whether the sensor has a detection or false alarm. In the event of a detection 
or false alarm, the detection threshold state of all sensors within communication range (also 
fixed at 10 meters) is lowered to the “cued” state. 

Some performance parameters of the sensor are adjustable by slider controls. The default 
“cold” probabilities of detection and false alarm are 0.9 and 10-4, respectively. In the 
“cued” state, with a lowered detection threshold, the default probabilities of detection and false 
alarm are 0.99 and 10-2, respectively. The detection and communication ranges of each sensor 
are fixed at 10 meters, the effect being that the neighborhood of influence of each sensor is 
fixed to a subset of eight surrounding sensors. 

Figure 3 shows by black and gray dots, pebbles currently detecting (black), those receiving a 
cue (light gray) but not yet detecting, and those that have detected (both cued and cold) within 
the cue tone persistence time (dark gray). The dashboard on the right allows the simulation user 
to adjust the key zone design parameters of cold and cued pebble communication tone 
detection and false alarm probabilities over one and several orders of magnitude, respectively. 
Also shown is a sliding adjustment of cue tone persistence time (“cued timeout”) from zero to 5 
seconds. 

The simulation was useful in testing the stability of the network. Figure 3 illustrates a typical 
picture of the display with random false alarm detections for a pebble packing density of 
7-meter separation. The lack of correlation (less than five pebbles detecting in a local area) 
indicates that a remote receiver with a directive antenna beam that scans over the pebble field 
would not receive the requisite signal level to expect an intruder. 

 



 

 

 
Figure 3. Simulation False Alarm Snapshot at Zone Requirements to First Order 

Figure 4 illustrates a snapshot of an intruder moving through the sensor field after having 
entered the field some time ago. The sensors having detected the intruder leave a persistent trail 
of transmitting pebbles for a directive remote receiver to detect. If the remote receiver display 
retains the pebble transmission history and its beam directivity is sufficiently focused, then the 
track of an intruder could be followed. 



 

 

 

 

 
Figure 4. Simulation of False Alarms and Intruder Track for Nominal Zone 

Requirements 
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Figure 5. Simulation False Alarm Snapshot at 10 Times Higher Rate than Zone 

Requirement for Cold Detection 

Figures 5 and 6 illustrate instabilities of the sensor field. Figure 5 shows the false alarms if the 
cold detection false alarm probability is increased by a factor of 10 from 10-4 to 10-3. Enough 
individual false alarms occur that a directive remote receiver could be receiving a spatially 
correlated signal for a false intruder alert, as shown. Figure 6 is the case for which the cold 
detection false alarm probability is retained at the nominal 10-4, but the false alarm probability 
for a cued detection is increased by a factor of 10 from 10-2 to 10-1. Swarm “clouds” appear 
within seconds due to a high percentage of cued false detections. Moving these false alarm 
probabilities shown in Figures 5 and 6 back to their nominal value causes the sensor field to 
calm down to the picture of Figure 3 in a matter of seconds. 



 

 
Figure 6. Simulation False Alarm Snapshot at 10 Times Higher Rate than Zone 

Requirements for Cued Detection 

Other insights gained from the sensor net model include: 

• The average separation between neighboring pebbles should not be so small that more 
pebbles than the nearest-neighbors can detect the cue tones. Otherwise, so many 
pebbles would be cued by a single cue tone that a “swarming instability” such as in 
Figure 6 could occur. On the other hand, too great inter-pebble distances approaching 
the communication zone range will provide insufficient inter-node interaction to 
respond to an intruder with sufficient cued detections. In other words, the model helps 
to verify the appropriate density of pebbles. 

• Reducing the tone timeout from 5 seconds to 1 or 2 seconds cleans up the false alarm 
picture but further reduces the persistence of the track picture (Figure 4) at the remote 
receiver. 

Summary 
We have developed a specification and design approach for near-neighbor based systems 
engineering to advance the system engineering practice for swarming systems.  We applied this 
approach to a new swarming network concept as a test case. Results for this test case indicate 
that the near-neighbor zone approach provides a tractable means to specify performance of the 
swarming network based on near-neighbor interactions. Straightforward analysis of these 
zones coupled with a statistical network model has allowed us to gain insights into such 
performance characteristics as network stability and response to an intruder. These insights 
coupled with specific field tests [Krill et al., 2008] have allowed us to specify the system 



 

 

requirements and design. Planned continued development of this system will likely provide 
further insights into the sufficiency and benefits of the new approach. 

Future Work 
We intend to examine introduction of additional emergent features to the swarming intruder 
detection network. Additional features under our consideration, and key design issues, include: 

• Kinetic response by pebble nodes – Pebble locomotion toward an intruder or 
transmission of tags or materials to “mark” the intruder for followup human inspection. 
Reaction distance and speed of response by the pebbles will impact network stability. 
For example, pebbles moving too quickly toward a detected intruder could expose 
patches of the sensor field to inadequate sensor density allowing a subsequent intruder 
to egress with lower sensor response performance. 

• Diverse sensor types and performance zones – A diversity of sensor types (e.g., audio, 
infrared, optical) spread over a pebble field, each with a different detection range might 
provide better rejection of false alarms or provide provision, via correlation of 
detections from different sensors, to ensure that the intruder is appropriately identified 
as human (vehicle or on foot) versus, for example, a wild animal. 

• Pebbles could be arrayed in concentric rings surrounding a protected site so that the 
outer ring provides an alert, the next ring in provides identification with a different suite 
of sensors, and, perhaps, an inner ring provides a response to inhibit the intruder, such 
as an audible alarm or nonlethal tear gas emission. In this manner such a “layered 
defense” swarming network would exhibit specialties in the pebble population not 
unlike insect hives and nests in nature. 

For these features we plan to exercise the S.E. approach described in this paper. We will 
explore whether introduction of an increasing number of node types and behaviors can be 
addressed as a coupled superposition of coexisting swarming networks or whether all 
near-neighbor zone features must be addressed together to gain adequate insights into 
emergence stability and functional performance. We plan to report our findings as our systems 
engineering of swarming networks continues.  This will include continued field testing of 
prototype elements as reported in [Krill et al., 2008] to validate dynamic behaviors in actual 
environments. 

The question of the 2008 INCOSE panel, quoted previously, remains for the general case of 
more complex systems that exhibit emergent behavior such as a massive power 
grid, a MANET (Mobile AdHoc Network), or a complex defense system of systems such as 
the U.S. Army's Future Combat System (FCS).    Emergent behavior for a power grid 
could take the form of propagating power variations as the network control mechanisms 
attempt to compensate for localized disruptions, resulting in grid power collapse.  This appears 
to have occurred in the eastern United States in 1993, when not -understood events cascaded to 
cause this major disruption.   For the MANET and FCS examples, our results for the pebble 
network indicate that local propagation outages, not easily modeled, can cause dissimilar 
behavior among system elements due to variations of information received by individual 
elements.  Such dissimilar behavior among system elements might, in turn, lead to unwanted 
emergent responses.  Our approach might provide an early means to anticipate such behavior 
and then lead to design measures, such as autonomy logic, to constrain unwanted behavior 
early in the development program.  However, further investigation is required to address the 
value of generalizing the approach to such major systems of systems.  In anticipation of 
considering our approach for more general problems, the following candidate heuristics are 



 

offered for the general case of swarming, emergent systems. 

• Design for local near-neighbor interaction zones. 
• Create a statistical model to “tune” the inherent damping and amplified behavior by 

adjusting the near-neighbor design parameters. 
• Conduct limited scope tests to verify key attributes of some behavior characteristics to 

ensure understanding of the environment. 
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