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Abstract 

Recent years have witnessed new research interest in the study of complex systems 

architectures, in domains like biological systems, social networks etc. Seminal works covering each of 

these systems have appeared in high impact journals like Nature, Science, etc. Unifying principles 

have emerged and helped in gaining new understanding in a domain by extending the understanding 

gained in other domains. These developments in complex systems open up possibilities in the research 

into architectures of complex engineering systems. Complex engineering systems are synthesized from 

large number of components giving it a physical architecture.  We abstract the physical architecture of 

different engineering systems as a network/graph, where the nodes/vertices correspond to 

components and edges correspond to interconnections between them. Complex systems research in 

biology defines motifs as recurring sub-graphs from which the network is built. They also argue 

motifs as simple building blocks of complex networks, offering a way to understand the basic 

functionality of a system. In this paper, we explore 32 arbitrarily chosen engineering systems 

architectures for motifs. We discover motifs within each system and also interesting motif templates 

across systems. 
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1. Introduction 

Recent years have witnessed new research interest in the study of complex systems 

architectures, in domains like biological systems, social networks etc. [Duncan J Watts , Newman MEJ]. 

Unifying principles have emerged and helped in gaining new understanding in a domain by extending 

the understanding gained in other domains [Boccaletti S et all].  Researchers in other areas have 

commented on the hesitation of researchers in complex engineering systems to look at their problems 

in the light of emerging ideas in complex systems in general. “Engineering should be at the centre of 

these developments, and contribute to the development of new theory and tools” [J.M. Ottino];  

“Engineers seem a little bit indifferent as if engineering is at the edge of the science of complexity” 

[Zhi-Qiang Jiang at all].  

Architecture is the fundamental structure of components of a system - the roles they play, and 

how they are related to each other and to their environment [ANSI IEEE Standard 1471]. The dictionary 

definition of complexity refers to – consisting of interconnected/interwoven components. Complexity 

of a system scales with the number of components, number of interactions, complexities of the 

components & complexities of interactions [Edward Crawley et all]. Complex engineering systems are 

synthesized from large number of components coupled to each other giving it a physical architecture;  

they are evolved through a design process that is best represented by large number of connected tasks 

giving it a technical architecture; and they are evolved by collaborating groups of people giving it an 

organizational architecture. These architectural views pose interesting possibilities in respect of 

searching for new understanding in complex engineering systems. Product architectures are 

considered complex systems [Tyson R Browning].  Architecture of a system can be abstracted as a 

network/graph, where the nodes/vertices correspond to components in the system and edges 

correspond to interconnection between them.  

Complex systems research in biology defines motifs as recurring sub-graphs from which the 

network is built. In biology, the analysis of network motifs has led to interesting insights in the areas 

of protein-protein interaction prediction [Albert L and Albert R ] and analysis of temporal gene expression 

patterns [M Ronen et all , S.S. Shen-Orr et all]. Research in biology also argues motifs as simple building 

blocks of complex networks whose selection may possibly be one way to understand the basic 

functionality of a system. 
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2. Motifs  

Motifs are considered to be functional building blocks of a network. “Motifs are recurring 

sub-graphs of interactions from which the networks are built” [Milo R et all]. These are patterns of 

interconnections occurring in real networks in numbers that are considered significant. . Motifs can be 

of any size from n=2 to N-1, where N is the total number of nodes in the network.  Let us consider a 

directed network with N nodes and look for motifs of size n=3.  There are 
N
C3 different combinations 

of triplets of nodes in an N-noded network.  Some triplets out of  
N
C3 need not form a connected 

graph, and are not sub-graphs (an example is when out of 3 nodes 2 nodes are connected to each 

other and the third does not have an edge with the first two).  A connected triplet is a 3-noded sub-

graph.  For a 3-noded sub-graph there are 13 patterns possible as shown in Fig 3.1.   

 

Fig 3.1 

Each of the 
N
C3 triplets, if it is a sub-graph, will assume one of the 13 patterns.  One can count the 

occurrence of each pattern for all 
N
C3 triplets and define a vector, Preal, of size 13.  In a network the 

count for a particular pattern may be high, which by itself is not considered important. It is possible 

that such high count for that pattern is unavoidable for a network synthesized using the N nodes that 

preserve the degree distribution of the real network.   To investigate this, randomized networks are 

created [Milo R et all] using same N nodes, ie. number of nodes and their degree distribution is 

preserved.  Each randomized network defines a pattern count vector, Prand-i.  Large number of 

randomized networks (i=1 to m) will define a vector of mean, µµµµrand and a vector of standard deviation, 

σσσσrand, of 13 patterns.  For the real network we can check the significance of j
th
 pattern by, Sj = (Preal-j - 
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µrand-j)/σrand-j for j=1 to 13.  For a normally distributed random number, value of Sj greater than 3 or 

less than 3 implies a rare occurrence (3σ limit).  Any pattern with its Sj > 2 is considered a motif [Milo 

R et all], and is an over-represented pattern.  Any pattern with its Sj < -2 is an anti-motif, and is an 

under-represented pattern. 

2.1  Motif Significance Profile 

 S is a vector of size 13 that defines significance of 13 patterns in the real network.  Milo R et all 

argue that S is influenced by the size of the network and propose normalization of S to make it largely 

independent of network size.  Thus, significance profile vector, Z  is defined as Zj = Sj / |S|.  This 

makes comparison of networks of varying sizes possible. 

2.2 Correlation of Motif Significance Profiles 

  [Milo R et all] have reported similarities in significant profiles of systems.  They propose the 

standard correlation coefficients (Pearson correlation coefficient) between Z vectors of two systems 

as a measure of similarity between their significance profiles.  The correlation coefficient can vary 

from -1 to +1.  A value of +1 implies that the 13 patterns are present to the same extent in both 

systems, ie if a particular pattern is over-represented (under-represented) in one system it will be 

over-represented (under-represented)  in the other system to the same extent.  A value of -1 means 

that if a pattern is over-represented (under-represented) in one system the same will under-

represented (over-represented) in the other system.   

3. Engineering Systems 

In this paper we consider 32 arbitrarily chosen engineering systems and study their architectures. 

Systems considered range from aircraft engine [Manuel E Sosa et all], softwares [Software graph data for 

specified software systems], electronic circuits [ISCAS High level models, ISCAS'89 benchmark data], robot [Amro M. 

Farid and Duncan C. McFarlane], refrigerator [Homas U. Pimmler and Steven D] etc.  Table 3.1 briefly identifies 

each of the 32 systems. The 32 systems are of vastly different sizes (ranging from minimum 16 

components to maximum 23843 components).  We create 1000 random networks for each considered 

system using same N nodes, ie. number of nodes and their degree distribution is preserved. Adequacy 

of 1000 samples for estimating µ and σ of patterns is confirmed. For each real network we compute 

the significance of each of the 13 patterns of 3-noded sub-graphs,  Sj = (Preal-j - µrand-j)/σrand-j; j=1 to 

13.   For example, the aircraft engine has S = [-5.02, -1.86, -10.04, -3.90, 0.72, 4.04, -11.49, -20.71, -0.23, 1.94, 5.34, 
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8.41, 16.86 ].   S vectors are in fact computed for 3-noded, 4-noded and 5-noded sub-graphs and results 

are available at our website [Shaja AS, Sudhakar K, CASMots:].  (It may be noted that the size of S vector 

for 4-noded is 199). Further study in this paper is restricted to 3-noded sub-graphs only. The 

significance profiles for all 32 systems are now computed as, Zj = Sj / |S|.  For example, Z for the 

aircraft engine is [-0.099, -0.036, -0.198, -0.077, 0.014, 0.079, -0.227, -0.408, -0.004, 0.038, 0.105, 

0.166, 0.332].   

Similarities in significance profiles across all 32 systems are now investigated by computing 

correlation coefficient between each pair.   This information is presented in Fig 3.2 as a square matrix 

of size 32.  Diagonal elements of the matrix represent similarity of significance of profile of a system 

with itself and are always +1. Off diagonal elements can take values in the range -1 to +1.  In Figure 

3.2 the full range of values (-1 to +1) is grouped into 3 regions and indicated by 3 different colors for 

visual impact.  

– Correlation coefficient of -0.65 to +0.65, Weak or no correlation,  light green color 

– Correlation coefficient of +0.65 to +1.00, Positively correlated, red color 

– Correlation coefficient of -0.65 to -1.00, Negatively correlated, blue color    

The matrix in Fig 3.2 appears checkered and it is not easy to discern similarities between groups of 

systems that are hidden within. We perform clustering using a standard clustering algorithm 

(partitioning around medoids algorithm [L Kaufman, P.J Rousseeuw, 1990, Finding Groups in Data: An introduction to 

cluster analysis]), where edge weights are clustering coefficients.  The row-columns of the correlation 

matrix are now re-ordered based on that standard clustering algorithm and shown in Figure 3.3.  

Grouping of systems based on similarity of significant profiles is clearly visible now.   There are 4 

distinct groups as revealed by 4 red colored blocks along the diagonal.  These 4 blocks contain 

systems whose significance profiles are all positively correlated with respect to each other.  It is 

extremely interesting to note that the above grouping coincides with groupings of systems based on 

whether they are software, electrical or mechanical.  Each of these 4 groups is discussed in the next 

section.  

 

 

 



 6 

System no System Name System no System Name System no System Name 

S1 Apword S12 Traffic control system (s382) S23 Robot 

S2 Linux S13 ALU (c880) S24 Vtk 

S3 Aircraft Engine S14 Digital Fractional Multiplier (s838) S25 PLD (s832) 

S4 ALU (c7552) S15 ECAT (c1908) S26 Digital Fractional Multiplier (s208) 

S5 Forword logic chips (s13207) S16 Traffic control system (s400) S27 Forword logic chips (s15850) 

S6 ALU (74181) S17 PLD (s832) S28 Mysql 

S7 ECAT (c1355) S18 Xmms S29 Forword logic chips (s38417) 

S8 Forword logic chips (s9234) S19 Forword logic chips (s38584) S30 PLD (s713) 

S9 Refrigerator S20 Digital Fractional Multiplier (s420) S31 ALU (c3540) 

S10 Traffic control system (s420) S21 PLD (s641) S32 ALU (c2670) 

S11 ECAT (c499) S22 Traffic control system (s562)   

 

Table 3.1 

 

Fig 3.2 
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4. Discussion 

Group I :  

 All systems from Group I in Fig 3.3 are positively correlated to each other with correlation 

coefficients that average at 0.94. They all display one strong motif, also referred as 3-loop (id position 

8 in fig:3.1) and one anti-motif, also referred as “V-in” (id position:2 V-in in fig:3.1). Interestingly 

systems in this group turned out to be Electronic Circuits
*
 of the type Digital Fractional Multiplier 

                                                             

* All Electronics circuits are
 
picked up randomly. Nodes represent component gates and edges represent the interconnection between gates. 

Group 4 

Group 3 

Group 2 

Group 1 

Group 4 Group 3 Group 2 Group 1 
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namely s208, s420 & s838 (systems S26, S20 & S14 respectively using terminology used in figure 3.2 

& 3.3). 

Group II :  

 All systems from Group II in Fig 3.3 are positively correlated to each other with correlation 

coefficients that average at 0.99. They display one strong motif, also referred as “feed forward loop” 

(id position:7 in fig:3.1) and one anti-motif, also referred as “V-in” (id position:2 in fig:3.1). 

Interestingly systems in this group turned out to be all 5 Softwares
†
 namely Apword (S1), Linux (S2), 

MySQL (S28), Vtx (S24), XMMS (S18) and few Electronic Circuit
*
 namely Traffic System s444 

(S10), PLD s713 (S30), ALU c2670 (S32), ECAT c1355 (S7), Forward Logic Chains s9234, 

s13207, s15850, s38417, s38584(S8, S5, S27, S29, S19). This feed forward loop has been shown to 

perform signal processing functions like acceleration of transcription response, pulse generation etc 

for transcription regulation family in biology [Milo R et all]. 

Group III :  

 All systems from Group III in Fig 3.3 are positively correlated to each other with correlation 

coefficients that average at 0.92. They display one strong motif, also referred as “V-in” (id position:2 

in fig:3.1) and one anti-motif, also referred as “feed forward loop” (id position:7 in fig:3.1). 

Interestingly systems in this group turned out to be Electronic Circuits
*
 namely Traffic System s400, 

s382, s526 (S16, S12, S22), PLD s820, s832, s641 (S25, S17, S21), ALU 74181, c880, c7552, 

c3540 (S6, S13, S4, S31) and ECAT c499, c1908 (S11, S15).  

Group IV :  

 All systems from Group IV in Fig 3.3 are positively correlated to each other with correlation 

coefficients that average at 0.92.  They display one strong motif, also referred as “clique” (id 

position:13 in fig:3.1) and one anti-motif, also referred as “Mutual V” (id position:6 in fig:3.1). 

Interestingly systems in this group turned out to be all Mechanical
‡
 systems namely Robot (S23), 

Aircraft Engine (S3) and Refrigerator (S9).  

                                                             

† 
These Softwares chosen randomly from open source for our study. Nodes represent a software class and edges represents reference between classes. 

‡ 
All Mechanical systems picked up randomly for our study. Nodes represent physical components and edges represent exchange of energy, material or signal 

between components.
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 The correlation across groups is also interesting.  Group I is unlike other 3 groups. Group IV 

is similarly unlike other 3 groups.   Group II and Group III are highly negatively correlated with 

respect to each other, while being unlike Group I or Group II.  There are a few systems that fall 

marginally outside of this observation.  

A pictorial comparison of significance profiles of pairs of systems that are positively 

correlated, negatively correlated, not correlated is shown from Fig 3.4 to 3.6. (The 13 centered 

symbols from left to right represent Zj for j=1 to 13. The lines joining the 13 symbols have no meaning 

and are present only to create a visual impact).  When systems are positively correlated all the 13 

patterns are over (under) represented to the same extent. When systems are negatively correlated all 

the 13 patterns are over (under) represented in an inverse manner.  When systems are not correlated 

the 13 patterns do not show any such relation. 

-1

0

1

Digital Fractional Multiplier1(s208)

Digital Fractional Multiplier2(s420)

 

Fig 3.4 Significance Profile of 2 systems taken from Group I – Positive Correlation between them 
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0

0.5
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Fig 3.5 Significance Profile of one system from Group II & III – Negative Correlation between them 

 

 

-0.5

0

0.5

ECAT 2(c1355)
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Fig 3.6 Significance Profile of one system from Group III & IV – No correlation between them 
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5. Conclusion & Directions 

Ideas related to complex system architectures may give insight into previously complex and 

poorly understood phenomena in engineering domain. Albert Barabasi argues that, “The science of 

networks is experiencing a boom. But despite the necessary multidisciplinary approach to tackle the 

theory of complexity, scientists remain largely compartmentalized in their separate disciplines” [Albert 

László Barabási]. The application of this complex system architectures theory is still in infancy and has 

very recently entered into study of engineering systems or their design. This paper has calculated 

motifs and significance profile for system architectures based on components across 32 diverse 

engineering systems. Interesting motifs are seen in all systems.  Motif significance profiles across 

systems has indicated interesting grouping of systems that coincides with their grouping as software, 

electrical and mechanical. This study has thrown some insights about motif being a possible building 

block to understand complex engineering systems. 
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