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Abstract. Existing reliability evaluation methods rely on the availability of accurate 
component states data. They will become ineffective when the states themselves are 
uncertain or unknown, which usually happens during the early stages of the development of 
new systems. In such cases it is important to understand how uncertainties will affect the 
system reliability measures. Another drawback of current methods studying reliability of 
Multi-State System (MSS) is that they only considered the systems whose components 
have several discrete states. For those whose components have continuous states, these 
methods are not effective either. This paper considered the continuous distribution of 
components states during the approximation of Multi-State System (MSS) reliability and 
proposed a method to assess the reliability of this kind of system using Monte-Carlo 
simulation. This method will also be useful when we have no enough data to know the 
exact discrete states and related probability, and can only estimate components states 
distribution types and related parameters. Two examples were employed to illustrate the 
method. Comparison of the two examples shows that component state uncertainty has 
significant influence on the assessment of system reliability. Our effort will make the 
reliability approximation more realistic compared with existing methods.  
Key Words: uncertainty analysis, Multi-State System, system reliability, sensitivity, 
uncertainty, Monte Carlo simulation 

Introduction 
Recently the question of reliability has become a matter of great interest due to the 
increased competition, complex product design and development, the use of increasingly 
sophisticated manufacturing processes, particularly in the area of defence and space 
technology, and increasing focus on customer satisfaction. Although a great deal of 
progress has been made, many shortcomings still exist in this field. For instance, existing 
classical reliability prediction methods may not be effective enough to provide the required 
accuracy particularly during the product development process (Wong, 1990). The greatest 
uncertainty associated with reliability predictions is the variability or non-deterministic 
nature of the distribution parameters. Sometimes the information available on the failure 
characteristics of a product may not be well-defined and known. This is particularly true 
during the early stages of the development of new products. Unfortunately, this problem 
has not been addressed completely despite tremendous amount of efforts by the researchers 
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over a long period of time (Bhamare, Yadav, and Rathore, 2007). People usually use point 
estimates and plug a number as the value of the unknown parameter into the model to 
compute the reliability. This has not been a very effective way to deal with uncertainty 
because we have no idea how the parametric uncertainties propagate into final measures 
such as reliability, performance and deformability (Yin et al., 2001). Therefore, analysis 
and quantification of uncertainty around the parameters play an important role in making 
reliability assessment realistic. 

Besides the problem with parametric uncertainty during reliability assessment, traditional 
reliability assessment has been based on binary-state systems. System reliability in a 
binary-state context is the probability that the system properly provides the service for 
which it was intended, under the condition that the system and its components can be either 
fully working or failed (completely nonworking) (Ramirez-Marquez and Coit, 2005b). 
Numerous approaches and methodologies have been proposed to solve this difficult 
problem. 

However, researchers have indicated that in some cases, binary state theory fails to 
characterize the actual system reliability behaviour, which is multi-state (Ramirez-Marquez 
and Coit, 2005a). For systems such as water distribution, telecommunications, oil and gas 
supply, and power generation & transmission, some components of the system may be 
operating in a degraded state causing the system to provide service at less than full capacity. 
However, the system may still be able to provide an acceptable level of service, or perhaps, 
a partial level of service. Such systems are called Multi-State Systems (MSS). For MSS, 
reliability can be defined as the probability that the system capacity can meet a required 
demand when the system components and demand follow a multi-state behaviour 
(Ramirez-Marquez and Coit, 2005b). Many MSS reliability models have been proposed to 
describe such systems focusing on modelling and analysis of reliability.  

Existing MSS models mainly considered two general types of multi-state behavior 
(Ramirez-Marquez and Levitin, 2008). The first one involves a system where components 
are binary but different kinds of components have different nominal performance levels 
leading the system to work at different demand levels. These systems are usually known as 
MSS with binary-capacitated components (MSBC). The second version considers multi-
state components so that system performance is dictated by the states of the components. In 
short, existing MSS models assume that components have only several (two or more) 
discrete states and each state has a particular probability to happen.  

However, there are also some other systems with more complicated behavior. States of 
these systems and their components may be continuous instead of discrete. That is, system 
and component states can be any value within an interval. For these systems, current MSS 
model will not be effective to estimate the reliability. 

In some conditions, we may know the several states and their probability a component or 
system may take. In these cases, existing methods (Marquez & Coit, 2004; Lin, 2001; Yeh, 
2004;) can be used to effectively estimate system reliability. Under some other conditions, 
however, we may not know what states and the corresponding probability each component 
may take. We may just know some parameters (e.g., mean, maximum or minimum) and the 
probability distribution type of each component state. In these cases, existing methods 
(Marquez & Coit, 2004; Lin, 2001; Yeh, 2004;) will not be effective to estimate the system 



reliability either.  

This paper has two main targets, one is to propose a method to approximate reliability of 
MSS with components that have continuous capacity and the other is to illustrate the effect 
of component uncertainty may have on the system reliability. 

Assumptions: 
 Component states are statistically independent. 
 Demand loads during associated time intervals are known and fixed. 

Literature Review 
Previous studies on system reliability are mainly on binary-state systems. Ever since 
researchers realized the existence of multi-state systems, reliability analysis of multi-state 
systems has received considerable attention. Theoretical and applied studies have been 
devoted to the areas of multi-state system reliability, such as simulation, approximation 
methodologies, and optimization. 

Levitin, et al. (1998) generalized the redundancy optimization problem to multi-state 
systems and proposed a procedure which determines the minimal-cost series-parallel 
system structure subject to a multi-state availability constraint. They also developed a fast 
procedure, based on universal generating function, to evaluate the multi-state system 
availability. Ramirez-Marquez and Levitin (2008) proposed an effective approach for the 
estimation of reliability confidence bounds based on component reliability and uncertainty 
data for multi-state systems with binary-capacitated components using the universal 
generating function technique. The universal generating function has proven to be a 
valuable and efficient tool for relatively complex systems.  

Lin (2001) extended stochastic-flow network model of binary-state network to multi-state 
network to compute the exact multi-state system reliability. The algorithm of Lin (2001) 
introduced the method used to compute minimal path sets of binary-state systems to multi-
state systems. However, they limited the states of system components to be weakly 
homogeneous. That is, components can have a different number of states, yet for any two 
components h and k with bh =lh, bk=lk, and lh >lk, the first lk component states must be 
equal. Thus, the methodology may not be suitable for systems whose components are 
heterogeneous.  

Yeh (2004) proposed a minimal cut sets approach to evaluate the reliability in terms of 
MCs in a stochastic-flow network. The approach is an extension of the best of known 
algorithms for solving the d-MC (a special MC but formatted in a system-state vector, 
where d is the lower bound points of the system capacity level) problem from the 
stochastic-flow network without unreliable nodes to that with unreliable nodes by 
introducing some simple concepts. Besides the limitation that components are weakly 
homogeneous, this model also limited that the capacity of component must be an integer-
valued random variables. 

Ramirez-Marquez and Coit (2005a) described a Monte-Carlo (MC) simulation 
methodology for estimating the reliability of a multi-state network. Within their model, 
components of the network follow a degradation pattern that reduces the ability of the 
system to provide some required service, which makes the network and its components all 



have multiple states. They proposed an information sharing approach, that is, a selected 
number of MMCV called offspring cuts inherit information from a select number of 
MMCV called parent cuts. This approach significantly reduced the number of vector 
enumerations needed to obtain all MMCV and computation load. 

As we reviewed above, existing models on MSS assume that components have only several 
discrete states and the probability of each state to happen is also known. These models will 
not be useful for systems whose states are continuous instead of discrete. They will not be 
useful either when we do not know the states and their corresponding probability a 
component may have. This paper will propose a method using Monte-Carlo simulation to 
approximate MSS reliability considering continuous component states and will also 
illustrate the influence that uncertainty of component states may have on the estimation of 
system reliability. 

Reliability Estimation 
Background. Reliability assessment is to assess the probability that a system will perform 
a required function without failure under stated conditions for a stated period of time. In a 
reliability prediction analysis, the components of a product or system are studied in an 
effort to predict the rate at which the product or system will fail.  

As discussed previously, most of the studies on reliability assessment are based on the 
assumption that the system is a binary-state system; some other studies on multi-state 
systems are based on the assumption that the system components have several discrete 
states. For systems where binary-state analysis is insufficient, incorrect reliability 
assessment can lead to faulty decision-making regarding system performance. Unnecessary 
expenditures, incorrect maintenance scheduling, and reduction of safety standards can 
potentially be related to unsatisfactory reliability assessments (Ramirez-Marquez & Coit, 
2005b). If the models on multi-state systems that have discrete component states are used to 
assess the reliability of systems that have continuous components, similar problems may 
happen.  

MC simulation. For MSS, whenever no economic or time constraints exist, an effective 
approach to obtain the true value of their reliability would be to test an infinite number of 
MSS in real-life situations until failure occurs. Unfortunately, MSS and component testing 
is limited to tight economic budgets and schedules. Thus, it is often unrealistic and 
infeasible to perform extensive system testing both at the component and system level. A 
more efficient approach to estimate MSS reliability is Monte-Carlo (MC) simulation 
(Ramirez-Marquez and Levitin, 2008). 

Lawless (1982) outlined the theory of MC simulation application. The MC method 
provides approximate solutions to a variety of mathematical problems by performing 
statistical sampling experiments on a computer. It is particularly useful for approximating 
stochastic relationships when no known exact expression is available (Wasserman, 2003). 
MC methods have proven efficient in statistical analysis of uncertainty in reliability 
engineering-related problems. Often it is found useful for complex reliability model which 
is difficult to handle by any of the available analytic methods (Bhamare, Yadav and 
Rathore, 2007). The MC has the capability of handling practically every possible case 
regardless of its complexity with a relatively simple mathematical formulation 



(Papadrakakis and Lagaros, 2002). The proposed method will use Monte-Carlo (MC) 
simulation to generate state vectors at each simulation run based on components state 
probability distribution. 

Simulation Procedure. In the proposed methodology, at each run of the simulation, a 
number for each component will be generated to depict its capacity based on the state 
probability distribution using Monte-Carlo. All the capacity number will compose a state 
vector of the system for the particular run. 

Once this state vector has been generated, the maximum capacity can be computed using 
the minimum-cut maximum flow theorem. The maximum capacity will be the state of the 
system at the particular run. 

So, for each simulation run, a state vector of the system components and the capacity of the 
system can be generated. After all the simulation runs, we can get the capacity probability 
distribution of the system. Based on the capacity distribution, we can get the probability 
that the capacity of the system is no less than the demand d, which will be the system 
reliability. 

Then we can analyze the influence that uncertainty of component parameters have on the 
system state. Do sensitivity analysis to see how much the changes of the component state 
distribution parameters will affect the state distribution of the whole system reliability. 

Illustrative Case Study 
In this section, two examples are employed to illustrate the proposed method. We will compare the 
results of the two examples to see the effect parameter uncertainty will have on the system 
reliability approximation. Both of the two examples are about the same system depicted as a 
network in Fig. 1. This network is called the ARPA and is frequently used as an illustrative example 
in studies on binary state reliability (Jin & Coit, 2003). The ARPA network has loose connectivity 
and is presented here to illustrate the influence that uncertainty of component state distribution 
parameters may have on the state of the assessment of the reliability of the whole system.  
  

 
Figure 1 ARPA network 
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Each component of the network in both examples has the same mean, maximum and minimum 
capacity. The difference is that they have different probability distribution. Capacity of components 
in the first example has lognormal distribution and that of the second example has Normal 
distributions, as shown in table 1 and table 2. To keep the capacity of each component within the 
interval of its minimal and maximal capacity, we did a little modification to the distribution during 
the simulation. If the state is larger than maximum capacity, let it equal to maximum capacity. If the 



state is less than minimal capacity, let it equal to minimal capacity. It is desired to obtain the 
reliability of system demand d=8.8 under each condition. That equals to the probability that the 
system demand is greater than or equal to d=8.8 according to the definition of MSS reliability 
definition (Ramirez-Marquez and Coit, 2005b). 

{ 8.8}rR P d= ≥  
We used Crystal Ball together with MS Excel to do the simulation for 2000 trials separately. From 
figure 2 and figure 4, it can be seen that the system reliability is easy to obtain. It can be found from 
figure 2 that if the components states follow lognormal distribution, the reliability of the network 
will be 97.83%. From figure 4, we found that if the components states follow normal distribution, 
the reliability of the network will be 96.96%. 

We can find the influence of different types distribution may have on the system reliability based on 
the comparison of the two examples. From table 1 and table 2, we know that the two examples have 
the same parameter values. If we use existing point estimation methods, we will get the same results 
about the reliability. However, the reliability of the two examples is not the same when we consider 
probability distribution using the methods this paper proposed. Although from figure 3 and figure 5, 
we can see that the difference between the mean (9.88 and 9.90 separately) and the maximum 
(11.74 and11.89 separately) are not so significant, the difference between system reliability 
(97.83% and 96.96% separately) is significant according to figure 2 and figure 4.  

Table 1: Lognormal capacity distribution 
Parameters Arc Maximal Capacity Probability distribution Location Mean Stand Deviation 

1 10 Lognormal 0 8 0.8 
2 6 Lognormal 0 5 0.5 
3 5 Lognormal 0 4 0.4 
4 3 Lognormal 0 2 0.2 
5 4 Lognormal 0 3 0.3 
6 7 Lognormal 0 5 0.5 
7 6 Lognormal 0 5 0.5 

8 9 Lognormal 0 7 0.7 

9 5 Lognormal 0 4 0.4 
 

 
Figure 2 



 
Figure 3 

Table 2: Normal capacity distribution 
Parameters Arc Maximal Capacity Probability distribution Location Mean Stand Deviation 

1 10 Normal 0 8 0.8 
2 6 Normal 0 5 0.5 
3 5 Normal 0 4 0.4 
4 3 Normal 0 2 0.2 
5 4 Normal 0 3 0.3 
6 7 Normal 0 5 0.5 
7 6 Normal 0 5 0.5 

8 9 Normal 0 7 0.7 

9 5 Normal 0 4 0.4 
 

 
Figure 4 



 
Figure 5 

Conclusions and Limitations 
This paper considered the continuous distribution of component capacity during the 
approximation of Multi-State System (MSS) reliability. We also proposed a method to 
assess the reliability of this kind of system. This method will be useful to assess the 
reliability of systems that have components with continuous capacity. It will also be useful 
when we do not have enough data to know the multiple discrete states and related 
probability of a system, and can only approximate its distribution and related parameters. 
Comparison of the two examples with same parameter and different distribution shows that 
component state uncertainty will have significant effect on the system reliability.  

Besides the assessment of system reliability, we may also concern about how to improve it. 
In order to find the effective way to improve system reliability, it is important to know the 
importance of each component. A lot of studies have been done on the assessment of 
Component Importance (CI). However, these studies only considered concrete component 
states. It is also needed to assess CI considering continuous component states. 
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